Uniform star polyhedron
3D model of a great retrosnub icosidodecahedron
In geometry , the great retrosnub icosidodecahedron or great inverted retrosnub icosidodecahedron is a nonconvex uniform polyhedron , indexed as U74 . It has 92 faces (80 triangles and 12 pentagrams ), 150 edges, and 60 vertices.[ 1] It is given a Schläfli symbol sr{3 ⁄2 ,5 ⁄3 }.
Cartesian coordinates
Let
ξ ξ -->
≈ ≈ -->
− − -->
1.8934600671194555
{\displaystyle \xi \approx -1.8934600671194555}
be the smallest (most negative) zero of the polynomial
x
3
+
2
x
2
− − -->
ϕ ϕ -->
− − -->
2
{\displaystyle x^{3}+2x^{2}-\phi ^{-2}}
, where
ϕ ϕ -->
{\displaystyle \phi }
is the golden ratio . Let the point
p
{\displaystyle p}
be given by
p
=
(
ξ ξ -->
ϕ ϕ -->
− − -->
2
− − -->
ϕ ϕ -->
− − -->
2
ξ ξ -->
− − -->
ϕ ϕ -->
− − -->
3
+
ϕ ϕ -->
− − -->
1
ξ ξ -->
+
2
ϕ ϕ -->
− − -->
1
ξ ξ -->
2
)
{\displaystyle p={\begin{pmatrix}\xi \\\phi ^{-2}-\phi ^{-2}\xi \\-\phi ^{-3}+\phi ^{-1}\xi +2\phi ^{-1}\xi ^{2}\end{pmatrix}}}
.
Let the matrix
M
{\displaystyle M}
be given by
M
=
(
1
/
2
− − -->
ϕ ϕ -->
/
2
1
/
(
2
ϕ ϕ -->
)
ϕ ϕ -->
/
2
1
/
(
2
ϕ ϕ -->
)
− − -->
1
/
2
1
/
(
2
ϕ ϕ -->
)
1
/
2
ϕ ϕ -->
/
2
)
{\displaystyle M={\begin{pmatrix}1/2&-\phi /2&1/(2\phi )\\\phi /2&1/(2\phi )&-1/2\\1/(2\phi )&1/2&\phi /2\end{pmatrix}}}
.
M
{\displaystyle M}
is the rotation around the axis
(
1
,
0
,
ϕ ϕ -->
)
{\displaystyle (1,0,\phi )}
by an angle of
2
π π -->
/
5
{\displaystyle 2\pi /5}
, counterclockwise. Let the linear transformations
T
0
,
… … -->
,
T
11
{\displaystyle T_{0},\ldots ,T_{11}}
be the transformations which send a point
(
x
,
y
,
z
)
{\displaystyle (x,y,z)}
to the even permutations of
(
± ± -->
x
,
± ± -->
y
,
± ± -->
z
)
{\displaystyle (\pm x,\pm y,\pm z)}
with an even number of minus signs.
The transformations
T
i
{\displaystyle T_{i}}
constitute the group of rotational symmetries of a regular tetrahedron .
The transformations
T
i
M
j
{\displaystyle T_{i}M^{j}}
(
i
=
0
,
… … -->
,
11
{\displaystyle (i=0,\ldots ,11}
,
j
=
0
,
… … -->
,
4
)
{\displaystyle j=0,\ldots ,4)}
constitute the group of rotational symmetries of a regular icosahedron .
Then the 60 points
T
i
M
j
p
{\displaystyle T_{i}M^{j}p}
are the vertices of a great snub icosahedron. The edge length equals
− − -->
2
ξ ξ -->
1
− − -->
ξ ξ -->
{\displaystyle -2\xi {\sqrt {1-\xi }}}
, the circumradius equals
− − -->
ξ ξ -->
2
− − -->
ξ ξ -->
{\displaystyle -\xi {\sqrt {2-\xi }}}
, and the midradius equals
− − -->
ξ ξ -->
{\displaystyle -\xi }
.
For a great snub icosidodecahedron whose edge length is 1,
the circumradius is
R
=
1
2
2
− − -->
ξ ξ -->
1
− − -->
ξ ξ -->
≈ ≈ -->
0.5800015046400155
{\displaystyle R={\frac {1}{2}}{\sqrt {\frac {2-\xi }{1-\xi }}}\approx 0.5800015046400155}
Its midradius is
r
=
1
2
1
1
− − -->
ξ ξ -->
≈ ≈ -->
0.2939417380786233
{\displaystyle r={\frac {1}{2}}{\sqrt {\frac {1}{1-\xi }}}\approx 0.2939417380786233}
The four positive real roots of the sextic in R 2 ,
4096
R
12
− − -->
27648
R
10
+
47104
R
8
− − -->
35776
R
6
+
13872
R
4
− − -->
2696
R
2
+
209
=
0
{\displaystyle 4096R^{12}-27648R^{10}+47104R^{8}-35776R^{6}+13872R^{4}-2696R^{2}+209=0}
are the circumradii of the snub dodecahedron (U29 ), great snub icosidodecahedron (U57 ), great inverted snub icosidodecahedron (U69 ), and great retrosnub icosidodecahedron (U74 ).
See also
References
External links