Fréchet filter

In mathematics, the Fréchet filter, also called the cofinite filter, on a set is a certain collection of subsets of (that is, it is a particular subset of the power set of ). A subset of belongs to the Fréchet filter if and only if the complement of in is finite. Any such set is said to be cofinite in , which is why it is alternatively called the cofinite filter on .

The Fréchet filter is of interest in topology, where filters originated, and relates to order and lattice theory because a set's power set is a partially ordered set under set inclusion (more specifically, it forms a lattice). The Fréchet filter is named after the French mathematician Maurice Fréchet (1878-1973), who worked in topology.

Definition

A subset of a set is said to be cofinite in if its complement in (that is, the set ) is finite. If the empty set is allowed to be in a filter, the Fréchet filter on , denoted by is the set of all cofinite subsets of . That is:[1]

If is not a finite set, then every cofinite subset of is necessarily not empty, so that in this case, it is not necessary to make the empty set assumption made before.

This makes a filter on the lattice the power set of with set inclusion, given that denotes the complement of a set in The following two conditions hold:

Intersection condition
If two sets are finitely complemented in , then so is their intersection, since and
Upper-set condition
If a set is finitely complemented in , then so are its supersets in .

Properties

If the base set is finite, then since every subset of , and in particular every complement, is then finite. This case is sometimes excluded by definition or else called the improper filter on [2] Allowing to be finite creates a single exception to the Fréchet filter’s being free and non-principal since a filter on a finite set cannot be free and a non-principal filter cannot contain any singletons as members.

If is infinite, then every member of is infinite since it is simply minus finitely many of its members. Additionally, is infinite since one of its subsets is the set of all where

The Fréchet filter is both free and non-principal, excepting the finite case mentioned above, and is included in every free filter. It is also the dual filter of the ideal of all finite subsets of (infinite) .

The Fréchet filter is not necessarily an ultrafilter (or maximal proper filter). Consider the power set where is the natural numbers. The set of even numbers is the complement of the set of odd numbers. Since neither of these sets is finite, neither set is in the Fréchet filter on However, an ultrafilter (and any other non-degenerate filter) is free if and only if it includes the Fréchet filter. The ultrafilter lemma states that every non-degenerate filter is contained in some ultrafilter. The existence of free ultrafilters was established by Tarski in 1930, relying on a theorem equivalent to the axiom of choice, and is used in the construction of the hyperreals in nonstandard analysis.[3]

Examples

If is a finite set, assuming that the empty set can be in a filter, then the Fréchet filter on consists of all the subsets of .

On the set of natural numbers, the set of infinite intervals is a Fréchet filter base, that is, the Fréchet filter on consists of all supersets of elements of .[citation needed]

See also

References

  1. ^ "Cofinite filter". mathworld.wolfram.com.
  2. ^ Hodges, Wilfrid (2008). "Model Theory". Encyclopedia of Mathematics and its Applications. Cambridge University Press. p. 265. ISBN 978-0-521-06636-5.
  3. ^ Pinto, J. Sousa; Hoskins, R.F. (2004). Infinitesimal Methods for Mathematical Analysis. Mathematics and Applications Series. Horwood Publishing. p. 53. ISBN 978-1-898563-99-0.

Read other articles:

French poem The PantherIn Jardin des Plantes, Parisby Rainer Maria RilkeArtists at the Jardin des Plantes.Original titleDer PantherTranslatorStanley AppelbaumC. F. MacIntyreJ. B. LeishmanWalter ArndtRobert BlyJessie LamontLanguageGermanFormNarrativePublication date ()Media typePaperbackFull text Poems of Rainer Maria Rilke (1918)/The Panther at Wikisource The Panther (subtitled: In Jardin des Plantes, Paris; German: Der Panther: Im Jardin des Plantes, Paris) is a poem by Rainer Maria Ril...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2015) تعد محافظة ريف دمشق خامس محافظات سوريا كبراً من حيث عدد السكان بتعداد قدره (1,820,000) نسمة يشكلون ما نسبته 7.7% من إجمالي تعداد سكان سوريا [1]، تعدة مدينة السيد...

 

العلاقات الإكوادورية المارشالية الإكوادور جزر مارشال   الإكوادور   جزر مارشال تعديل مصدري - تعديل   العلاقات الإكوادورية المارشالية هي العلاقات الثنائية التي تجمع بين الإكوادور وجزر مارشال.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة وم�...

Halaman ini berisi artikel tentang politikus. Untuk pemeran Filipina, lihat Mel Martinez (pemeran). Senator Martínez beralih ke halaman ini. Untuk kegunaan lain, lihat Senator Martínez (disambiguasi). Mel Martínez Senator Amerika Serikat dari FloridaMasa jabatan3 Januari 2005 – 9 September 2009 PendahuluBob GrahamPenggantiGeorge LeMieuxKetua Umum Komite Nasional Partai RepublikMasa jabatan19 Januari 2007 – 19 Oktober 2007Menjabat dengan Mike Duncan (Ketua Nasional) Pe...

 

Multi-image is the now largely obsolete practice and business of using 35mm slides (diapositives) projected by single or multiple slide projectors onto one or more screens in synchronization with an audio voice-over or music track. Multi-image productions[1] are also known as multi-image slide presentations, slide shows and diaporamas and are a specific form of multimedia or audio-visual production. Soft-edge masking and overlap for projected panoramas. One of the hallmarks of multi-...

 

Pour les articles homonymes, voir Campanella. Cet article est une ébauche concernant un acteur américain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les conventions filmographiques. Consultez la liste des tâches à accomplir en page de discussion. Joseph CampanellaJoseph Campanella dans The Nurses en 1965.BiographieNaissance 21 novembre 1924New YorkDécès 16 mai 2018 (à 93 ans)Sherman OaksNom de naissance Joseph Anthony CampanellaNationalité a...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Laws regarding the consumption and purchase of alcoholic beverages in Germany Beer is an important part of German culture. The German laws regulating alcohol use and sale are mostly focused on youth protection. In contrast to many other countries, legislation is relatively lenient and not designed to keep young people away from alcohol, but rather intended to teach them an appropriate approach to alcohol consumption, which is reflected by one of the lowest drinking ages in the world. The tax ...

 

Australian politician (born 1967) The HonourableBarnaby JoyceMPJoyce in 2017Deputy Prime Minister of AustraliaIn office22 June 2021 – 23 May 2022Prime MinisterScott MorrisonPreceded byMichael McCormackSucceeded byRichard MarlesIn office18 February 2016 – 26 February 2018[a]Prime MinisterMalcolm TurnbullPreceded byWarren TrussSucceeded byMichael McCormackLeader of the National PartyIn office21 June 2021 – 30 May 2022DeputyDavid LittleproudPreceded byMichael McC...

梅拉蒂·达伊瓦·奥克塔维亚尼Melati Daeva Oktavianti基本資料代表國家/地區 印度尼西亞出生 (1994-10-28) 1994年10月28日(29歲)[1] 印度尼西亞万丹省西冷[1]身高1.68米(5英尺6英寸)[1]握拍右手[1]主項:女子雙打、混合雙打職業戰績48勝–27負(女雙)109勝–56負(混雙)最高世界排名第4位(混雙-普拉文·喬丹)(2020年3月17日[2])現時世界排名第...

 

American think tank This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Political Research Associates – news · newspapers · books · scholar · JSTOR (January 2023) (Learn how and when to remove this message) Political Research AssociatesFounded1981; 43 years ago (1981) (as Midwest Research, Chicago)1987 (1987) (as PRA)FounderJean V. Ha...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Wonder Books – news · newspapers · books · scholar · JSTOR (November 2013) (Learn how and when to remove this message) Series of books produced in the 1930s and 1940s Some of the Wonder Books they Published The Wonder Books are a series of books produced in the...

Scott PorterPorter di WonderCon 2016LahirMatthew Scott Porter14 Juli 1979 (umur 44)Omaha, Nebraska, Amerika SerikatPekerjaanAktor, pengisi suara, penyanyiTahun aktif2004–sekarangSuami/istriKelsey Mayfield ​(m. 2013)​Anak2 Matthew Scott Porter (lahir 14 Juli 1979)[1] adalah seorang aktor, pengisi suara dan penyanyi asal Amerika Serikat. Ia dikenal karena perannya sebagai Jason Street dalam drama televisi NBC, Friday Night Lights. Porter juga be...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Merchant Shipping Act 1786 – news · newspapers · books · scholar · JSTOR (November 2008) United Kingdom legislationAct of ParliamentParliament of Great BritainLong titleAn Act to explain and amend an Act made in the Seventh Year of His late Majesty's...

 

事件現場の跡地に造られた公園の入口にある、犠牲者の名を刻んだ碑 バス学校爆破事件(バスがっこうばくはじけん、英語: the Bath School disaster)とは、1927年5月18日、アメリカ合衆国ミシガン州のバス(Bath Township)で発生した爆破事件。45人が死亡、58人が負傷し、犠牲者の大半は爆破されたバス統合学校(Bath Consolidated School)の生徒達(7歳~12歳)であった。アメリ�...

District in Osh Region, KyrgyzstanAravan Араван районуDistrict Coat of armsCountryKyrgyzstanRegionOsh RegionArea • Total1,340 km2 (520 sq mi)Population (2021)[1] • Total137,721 • Density100/km2 (270/sq mi)Time zoneUTC+6 Aravan (Kyrgyz: Араван району) is a district of Osh Region in south-western Kyrgyzstan. The administrative seat lies at Aravan.[2] Its area is 1,340 square kilometres (520 ...

 

American politician (1878–1963) Senator Lehman redirects here. For the Wisconsin State Senate member, see John Lehman (Wisconsin politician). Herbert LehmanLehman in 1949United States Senatorfrom New YorkIn officeNovember 9, 1949 – January 3, 1957Preceded byJohn Foster DullesSucceeded byJacob K. Javits1st Director General of the United Nations Relief and Rehabilitation AdministrationIn officeJanuary 1, 1943 – March 31, 1946Preceded byPosition establishedSucceeded byFio...

 

Canal 9 (Buenos Aires) Nombre público El NueveEslogan SumateTipo de canal Televisión digital terrestreProgramación GeneralistaPropietario Grupo Octubre (90%)Carlos Lorefice Lynch (10%)Operado por TeleartePaís  ArgentinaIdioma Español(incluye pista con autodescripción en español)Fundación 9 de junio de 1960 (64 años)Fundador Curt G. LoweFrederick Lowe(Compañía Argentina de Televisión (Cadete) y NBC)Inicio de transmisiones 9 de junio de 1960 (64 años)Indicativo de se...

Cet article est une ébauche concernant la chronologie des chemins de fer. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Chronologies Données clés 1919 1920 1921  1922  1923 1924 1925Décennies :1890 1900 1910  1920  1930 1940 1950Siècles :XVIIIe XIXe  XXe  XXIe XXIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies géographiques Afrique Afrique du Sud, A...

 

Aston VillaTên đầy đủAston Villa Football ClubBiệt danhThe VillaThe LionsThe Claret & Blue ArmyTên ngắn gọnVilla, AVFCThành lập21 tháng 11 năm 1874; 149 năm trước (1874-11-21)[1]SânVilla ParkSức chứa42.749[2]Chủ sở hữuNassef SawirisWes EdensChủ tịch điều hànhNassef Sawiris[3]Huấn luyện viên trưởngUnai EmeryGiải đấuGiải bóng đá Ngoại hạng Anh2023–24Ngoại hạng Anh, thứ 4 trên 2...