Fixed anvil temperature hypothesis

Anvil cloud over the Tiwi Islands, Australia

Fixed anvil temperature hypothesis is a physical hypothesis that describes the response of cloud radiative properties to rising surface temperatures. It presumes that the temperature at which radiation is emitted by anvil clouds is constrained by radiative processes and thus does not change in response to surface warming. Since the amount of radiation emitted by clouds is a function of their temperature, it implies that it does not increase with surface warming and thus a warmer surface does not increase radiation emissions (and thus cooling) by cloud tops. The mechanism has been identified both in climate models and observations of cloud behaviour, it affects how much the world heats up for each extra tonne of greenhouse gas in the atmosphere. However, some evidence suggests that it may be more correctly formulated as decreased anvil warming rather than no anvil warming.

Background and hypothesis

In the tropics, the radiative cooling of the troposphere is balanced by the release of latent heat through condensation of water vapour lofted to high altitudes by convection. The radiative cooling is mostly a consequence of emissions by water vapour and thus becomes ineffective above the 200 hPa pressure level. Congruently, it is at this elevation that thick clouds and anvil clouds – the topmost convective clouds – concentrate.[1]

The "fixed anvil temperature hypothesis" stipulates that owing to energetic and thermodynamic constraints imposed by the Clausius-Clapeyron relationship, the temperature and thus radiative cooling of anvil clouds does not change much with surface temperature.[1] Specifically, cooling decreases below −73 °C (200 K) as the ineffective radiative cooling by CO
2
becomes dominant below that temperature.[2] Instead, the elevation of high clouds rises with surface temperatures.[3]

A related hypothesis is that tropopause temperatures are insensitive to surface warming; however it appears to have distinct mechanisms from the fixed anvil temperature process.[4] They have been related to each other in several studies,[5] which sometimes find a fixed tropopause temperature a more reasonable theory than fixed anvil temperature.[6]

Evidence

The fixed anvil temperature hypothesis has been widely accepted and even extended to the non-tropical atmosphere. Its strength relies in part on its reliance on simple physical arguments.[7]

Models

The fixed anvil temperature hypothesis was initially formulated by Hartmann and Larson 2002 in the context of the NCAR/PSU MM5 climate model[8] but the stability of top cloud temperatures was already observed in a one-dimensional model by Hansen et al. 1981.[9] It has also been recovered, with limitations, in climate models[10] and in numerous general circulation models.[11] However, some have recovered a dependence on cloud size[12] and on relative humidity[13] or that the fixed anvil temperature is more properly expressed as anvil temperature changing more slowly than surface temperature.[14] Climate models also simulate an increase in cloud top height[15] and some radiative-convective models apply it to the outflow of tropical cyclones.[16]

The fixed anvil temperature hypothesis has also been obtained in simulations of exoplanet climates.[17] At very high CO
2
concentrations approaching a runaway greenhouse however, other physical effects pertaining to cloud opacity may take over and dominate the fixed anvil temperature as surface temperatures reach extreme levels.[18]

Observations

The fixed anvil temperature hypothesis has been backed by observational studies[19] for large clouds. Smaller clouds however have no stable temperature and there are temperature fluctuations of about 5 °C (9 °F)[20] which may relate to processes involving the Brewer-Dobson circulation.[13] Xu et al. 2007 found that cloud temperatures are more stable for clouds with sizes exceeding 150 kilometres (93 mi).[21] The ascent of cloud top height with warming is also supported by observations.[15] Analyses of convection changes during the El Niño-Southern Oscillation cycle support the hypothesis, stipulating that a moister middle troposphere offsets the effects of less favourable thermodynamics during El Niño.[22]

Implications

Clouds are the second biggest uncertainty in future climate change after human actions, as their effects are complicated and not properly understood.[23] The fixed anvil temperature hypothesis has effects on global climate sensitivity, since anvil clouds are the most important source of outgoing radiation linked to tropical convection[24] and their temperature being stable would render the outgoing radiation non-responsive to surface temperature changes.[25] This creates a positive feedback component of cloud feedback.[26] The fixed anvil temperature hypothesis has also been used to argue that climate modelling should use temperature rather than pressure to model the height of high clouds.[27]

Alternative views

A hypothesis which would have the opposite effect on climate is the iris hypothesis, according to which the coverage of anvil clouds declines with warming, thus allowing more radiation to escape into space and resulting in slower warming.[28] The proportionate anvil warming hypothesis by Zelinka and Hartmann 2010 was formulated on the basis of general circulation models and envisages a small increase of anvil temperature with high warming.[29] The latter hypothesis was intended as a modification to the fixed anvil temperature hypothesis[20] and includes considerations of atmospheric stability and appears to reflect actual climate conditions more closely.[27] Finally, there is a view that cloud top temperatures could actually decrease with surface warming[30] as convection height rises. This may constitute a non-equilibrium response.[31]

Research

As of 2020 further research is needed to properly understand the physics of some cloud feedbacks,[32] as they differ between models,[33] and progress on properly modelling clouds globally is very slow.[23]

References

  1. ^ a b Hartmann & Larson 2002, p. 1.
  2. ^ Hartmann & Larson 2002, p. 3.
  3. ^ Albern, Nicole; Voigt, Aiko; Pinto, Joaquim G. (2019). "Cloud-Radiative Impact on the Regional Responses of the Midlatitude Jet Streams and Storm Tracks to Global Warming". Journal of Advances in Modeling Earth Systems. 11 (7): 1949. Bibcode:2019JAMES..11.1940A. doi:10.1029/2018MS001592. ISSN 1942-2466. S2CID 182771431.
  4. ^ Hu, Shineng; Vallis, Geoffrey K. (2019). "Meridional structure and future changes of tropopause height and temperature". Quarterly Journal of the Royal Meteorological Society. 145 (723): 2709. arXiv:1902.08230. Bibcode:2019QJRMS.145.2698H. doi:10.1002/qj.3587. ISSN 1477-870X. S2CID 118967908.
  5. ^ Sullivan, Sylvia C.; Schiro, Kathleen A.; Stubenrauch, Claudia; Gentine, Pierre (2019). "The Response of Tropical Organized Convection to El Niño Warming". Journal of Geophysical Research: Atmospheres. 124 (15): 8490. Bibcode:2019JGRD..124.8481S. doi:10.1029/2019JD031026. ISSN 2169-8996.
  6. ^ Seeley, Jeevanjee & Romps 2019, p. 1849.
  7. ^ Seeley, Jeevanjee & Romps 2019, p. 1842.
  8. ^ Hartmann & Larson 2002, p. 2.
  9. ^ Del Genio 2016, p. 107.
  10. ^ Igel, Drager & van den Heever 2014, p. 10516.
  11. ^ Maher, Penelope; Gerber, Edwin P.; Medeiros, Brian; Merlis, Timothy M.; Sherwood, Steven; Sheshadri, Aditi; Sobel, Adam H.; Vallis, Geoffrey K.; Voigt, Aiko; Zurita-Gotor, Pablo (2019). "Model Hierarchies for Understanding Atmospheric Circulation". Reviews of Geophysics. 57 (2): 267. Bibcode:2019RvGeo..57..250M. doi:10.1029/2018RG000607. hdl:10871/36644. ISSN 1944-9208. S2CID 146704580.
  12. ^ Noda et al. 2016, p. 2313.
  13. ^ a b Chae, Jung Hyo; Sherwood, Steven C. (1 January 2010). "Insights into Cloud-Top Height and Dynamics from the Seasonal Cycle of Cloud-Top Heights Observed by MISR in the West Pacific Region". Journal of the Atmospheric Sciences. 67 (1): 259. Bibcode:2010JAtS...67..248C. doi:10.1175/2009JAS3099.1. ISSN 0022-4928.
  14. ^ Seeley, Jeevanjee & Romps 2019, p. 1848.
  15. ^ a b Li, R. L.; Storelvmo, T.; Fedorov, A. V.; Choi, Y.-S. (15 August 2019). "A Positive Iris Feedback: Insights from Climate Simulations with Temperature-Sensitive Cloud–Rain Conversion". Journal of Climate. 32 (16): 5306. Bibcode:2019JCli...32.5305L. doi:10.1175/JCLI-D-18-0845.1. hdl:10852/83101. ISSN 0894-8755. S2CID 198420050.
  16. ^ Shi, Xiaoming; Bretherton, Christopher S. (September 2014). "Large-scale character of an atmosphere in rotating radiative-convective equilibrium". Journal of Advances in Modeling Earth Systems. 6 (3): 616. Bibcode:2014JAMES...6..616S. doi:10.1002/2014MS000342.
  17. ^ Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Merlis, Timothy; Koll, Daniel D. B.; Forget, François; Abbot, Dorian S. (April 2019). "Simulations of Water Vapor and Clouds on Rapidly Rotating and Tidally Locked Planets: A 3D Model Intercomparison". The Astrophysical Journal. 875 (1): 11. arXiv:1912.11329. Bibcode:2019ApJ...875...46Y. doi:10.3847/1538-4357/ab09f1. ISSN 0004-637X. S2CID 146053272.
  18. ^ Ramirez, Ramses M.; Kopparapu, Ravi Kumar; Lindner, Valerie; Kasting, James F. (August 2014). "Can Increased Atmospheric CO2 Levels Trigger a Runaway Greenhouse?". Astrobiology. 14 (8): 723. Bibcode:2014AsBio..14..714R. doi:10.1089/ast.2014.1153. ISSN 1531-1074. PMID 25061956.
  19. ^ Asrar, Ghassem R.; Hurrell, James W., eds. (2013). Climate Science for Serving Society. Dordrecht: Springer Netherlands. p. 406. doi:10.1007/978-94-007-6692-1. ISBN 978-94-007-6691-4. S2CID 131478611.
  20. ^ a b Noda et al. 2016, p. 2307.
  21. ^ Noda et al. 2016, p. 2312.
  22. ^ Takahashi et al. 2024, p. 8.
  23. ^ a b Irfan, Umair (2021-05-19). "Scientists aren't sure what will happen to clouds as the planet warms". Vox. Retrieved 2021-07-05.
  24. ^ Hartmann & Larson 2002, pp. 1–2.
  25. ^ Hartmann & Larson 2002, p. 4.
  26. ^ Del Genio 2016, p. 116.
  27. ^ a b Kluft, Lukas; Dacie, Sally; Buehler, Stefan A.; Schmidt, Hauke; Stevens, Bjorn (1 December 2019). "Re-Examining the First Climate Models: Climate Sensitivity of a Modern Radiative–Convective Equilibrium Model". Journal of Climate. 32 (23): 8121. Bibcode:2019JCli...32.8111K. doi:10.1175/JCLI-D-18-0774.1. hdl:21.11116/0000-0002-A35E-D. ISSN 0894-8755. S2CID 135038760.
  28. ^ Seeley, Jacob T.; Jeevanjee, Nadir; Langhans, Wolfgang; Romps, David M. (2019). "Formation of Tropical Anvil Clouds by Slow Evaporation". Geophysical Research Letters. 46 (1): 492. Bibcode:2019GeoRL..46..492S. doi:10.1029/2018GL080747. ISSN 1944-8007. S2CID 134486980.
  29. ^ Zelinka, Mark D.; Hartmann, Dennis L. (16 December 2011). "The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics: Temperature Sensitivity of High Clouds". Journal of Geophysical Research: Atmospheres. 116 (D23): 1. doi:10.1029/2011JD016459.
  30. ^ Igel, Drager & van den Heever 2014, p. 10530.
  31. ^ Igel, Drager & van den Heever 2014, p. 10531.
  32. ^ "Cooling effect of clouds 'underestimated' by climate models, says new study". World Economic Forum. 10 June 2021. Retrieved 2021-07-05.
  33. ^ Yoshimori, Masakazu; Lambert, F. Hugo; Webb, Mark J.; Andrews, Timothy (2020-04-01). "Fixed Anvil Temperature Feedback: Positive, Zero, or Negative?". Journal of Climate. 33 (7): 2719–2739. Bibcode:2020JCli...33.2719Y. doi:10.1175/JCLI-D-19-0108.1. hdl:10871/121112. ISSN 0894-8755.

Sources

Read other articles:

Ravished ArmeniaPoster promosional untuk film tersebutSutradaraOscar ApfelProduserWilliam Nicholas SeligDitulis olehHarvey GatesAurora MardiganianNora WalnPemeranAurora MardiganianIrving CummingsAnna Q. NilssonHenry MorgenthauLillian WestDistributorFirst National PicturesTanggal rilis 19 Januari 1919 (1919-01-19) NegaraAmerika SerikatBahasaAntarjudul Inggris Ravished Armenia, juga dikenal sebagai Auction of Souls, adalah sebuah film bisu Amerika Serikat tahun 1919 yang berdasarkan pada b...

 

Untuk kegunaan lain, lihat Rompis. RompisPoster filmSutradaraMonty TiwaProduser Ferry Ardiyan Didi Ardiansyah Skenario Haqi Achmad Monty Tiwa Putri Hermansjah BerdasarkanRoman Picisanoleh Eddy D. IskandarPemeran Arbani Yasiz Adinda Azani Umay Shahab Cut Beby Tshabina Penata musikAndi RiantoSinematograferRollie MarkianoPenyuntingMoviesta PicturesPerusahaanproduksiMNC PicturesTanggal rilis 16 Agustus 2018 (2018-08-16) (Indonesia) 27 November 2020 (2020-11-27) (Netflix) D...

 

Kabupaten Rokan HuluKabupatenTranskripsi bahasa daerah • Abjad Jawiروكن هولوKawasan Kantor Bupati dan Masjid Islamic Center Rokan Hulu di Pasir Pangaraian LambangPetaKabupaten Rokan HuluPetaTampilkan peta SumatraKabupaten Rokan HuluKabupaten Rokan Hulu (Indonesia)Tampilkan peta IndonesiaKoordinat: 0°56′N 100°30′E / 0.93°N 100.5°E / 0.93; 100.5Negara IndonesiaProvinsiRiauIbu kotaPasir PengaraianJumlah satuan pemerintahan Daftar Keca...

Province in TurkeyIğdır Province Iğdır iliProvinceIğdır Genocide Memorial and MuseumLocation of the province within TurkeyCountryTurkeySeatIğdırGovernment • ValiErcan TuranArea3,664 km2 (1,415 sq mi)Population (2022)[1]203,594 • Density56/km2 (140/sq mi)Time zoneUTC+3 (TRT)Area code0476Websitewww.igdir.gov.tr Iğdır Province (Turkish: Iğdır ili, Kurdish: Parêzgeha Îdirê,[2] Azerbaijani: Iğdir rayonu, Armenian: Ի...

 

Heihe 黑河市ХэйхэKota setingkat prefekturSungai Amur (Heilong Jiang) dan Kota HeiheLokasi kota Heihe (kuning) di Heilongjiang (abu-abu)HeiheLokasi kota di HeilongjiangTampilkan peta HeilongjiangHeiheHeihe (Tiongkok)Tampilkan peta TiongkokKoordinat (Heihe Customs): 50°14′24″N 127°31′16″E / 50.2401°N 127.5210°E / 50.2401; 127.5210Koordinat: 50°14′24″N 127°31′16″E / 50.2401°N 127.5210°E / 50.2401; 127.5210NegaraT...

 

Dalam nama Korean ini, nama keluarganya adalah Kim. Kim Hye-eunLahir1 Maret 1973 (umur 51)Busan, Korea SelatanPendidikanUniversitas Nasional Seoul College of Music - VoicePekerjaanAktrisTahun aktif1997-sekarangAgen4 Doors Entertainment (2016) C-JeS Entertainment (2016-sekarang)Suami/istriKim In-sooNama KoreaHangul김혜은 Hanja金惠恩 Alih AksaraGim Hye-eunMcCune–ReischauerKim Hye-ǔn Kim Hye-eun (lahir 1 Maret 1973) adalah aktris Korea Selatan. Filmografi Seri televisi Tahun J...

Sporting event delegationIraq at the2020 Summer ParalympicsFlag of IraqIPC codeIRQNPCIraqi National Paralympic Committeein Tokyo, JapanAugust 24, 2021 (2021-08-24) – September 5, 2021 (2021-09-05)Competitors19 in 5 sportsMedals Gold 0 Silver 1 Bronze 2 Total 3 Summer Paralympics appearances (overview)199219962000200420082012201620202024 Iraq competed at the 2020 Summer Paralympics in Tokyo, Japan, from 24 August to 5 September 2021.[1] Medalists Me...

 

Belgium vs Canada Matches in Group F of the 2022 FIFA World Cup took place from 23 November to 1 December 2022.[1] The group consisted of Belgium, Canada, Morocco and Croatia.[2] The top two teams, Morocco and Croatia, advanced to the round of 16, and later played against each other again in the third-place play-off game, with Croatia winning 2–1.[3][4] Morocco advanced to the knockout stage for the first time since 1986. By winning the group, they became th...

 

  Nutria marina Estado de conservaciónEn peligro (UICN 3.1)[1]​TaxonomíaReino: AnimaliaFilo: ChordataSubfilo: VertebrataClase: MammaliaSubclase: TheriaInfraclase: PlacentaliaOrden: CarnivoraSuborden: CaniformiaFamilia: MustelidaeSubfamilia: LutrinaeGénero: EnhydraFleming, 1828Especie: E. lutris(Linnaeus, 1758)Distribución Distribución de E. lutris[editar datos en Wikidata] Distribución moderna e histórica de la nutria marina. Nutria marina durmiendo. La nutria...

У этого термина существуют и другие значения, см. Западный округ. Западный внутригородской округ город Краснодар Дата основания 1936 год Дата упразднения 1994 Прежние имена Кагановичский, Ленинский районы Микрорайоны Дубинка, Черёмушки, Покровка Площадь 22[1]  км² Насе...

 

Sukhoi Su-12 (Pesawat RK) adalah prototipe Soviet pengintai dan pesawat pengintai artileri dikembangkan selama Perang Dunia II. Pada November 1943, Sukhoi OKB merancang sebuah pesawat pengintai artileri berdasarkan Jerman Focke-Wulf Fw 189. Prototipe Su-12 terbang pada 26 Agustus 1947 dengan ND Fikson di kontrol. Program uji terbang selesai pada tanggal 30 Oktober. Spesifikasi (Su-12) Karakteristik umum Kru: Empat Panjang: 11.92 m (39 ft 1 in) Lebar sayap: 21.57 m (70 ft 9 in) Tinggi: 5,54 m ...

 

Former American racecar team For other uses, see Richard Petty Motorsports (disambiguation). Richard Petty MotorsportsOwner(s)Richard PettyAndrew M. MursteinDouglas G. BergeronBaseWelcome, North CarolinaSeriesNASCAR Cup SeriesOpened2009Closed2021CareerDebutCup Series2009 Daytona 500 (Daytona)Xfinity Series2009 NAPA Auto Parts 200 (Circuit Gilles Villeneuve)Latest raceCup Series2021 Season Finale 500 (Phoenix Raceway) Xfinity Series2016 Hisense 4K TV 300 (Charlotte)Races competedTotal: 1,027Cu...

طالع أيضًا: وظيفة وشغل وعمل وحرفة المهنة هي وظيفة مبنية على أساس من العلم والخبرة اختيرت اختياراً مناسباً حسب مجال العمل الخاص بها وهي تتطلب مهارات وتخصصات معينة ويحكمها قوانين وآداب لتنظيم العمل بها كما يمكن تعريفها بأنها الحرفة التي بواسطتها تعرف إمكانية تطبيق المعرفة �...

 

English nobleman Henry BeaufortEarl of SomersetArms of Beaufort: Royal arms of King Edward III with a bordure compony argent and azure for differencePredecessorJohn Beaufort, 1st Earl of Somerset (father)SuccessorJohn Beaufort, 1st Duke of Somerset, 3rd Earl of SomersetBorn26 November 1401 (probable)Died25 November 1418(1418-11-25) (aged 16)Rouen, FranceFamilyHouse of BeaufortFatherJohn Beaufort, 1st Earl of SomersetMotherMargaret Holland Henry Beaufort, 2nd Earl of Somerset (probably 26...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في ال�...

Disambiguazione – Se stai cercando altri significati, vedi Monte Bianco (disambigua). Monte BiancoIl Monte Bianco con, a destra, il Monte Maudit e il Mont Blanc du Tacul (versante italiano)Stati Italia  Francia Regione Valle d'Aosta Alvernia-Rodano-Alpi Provincia Valle d'Aosta Alta Savoia Altezza4 805,59 m s.l.m. Isolamento2 812 km Coordinate45°49′58″N 6°51′54″E45°49′58″N, 6°51′54″E Altri nomi e significatiIl Bianco, Tetto d'Europ...

 

USS LST-738 LST-738 burning after she was hit by a kamikaze off the Mindoro landing beaches, 15 December 1944. USS Moale (DD-693) is nearby. Note the hole in LST-738's starboard side, just forward of the large 738 painted there. Smoke in the left distance may be from LST-472, which was also hit by the kamikaze attack. History United States BuilderDravo Corporation, Neville Island Laid down20 February 1944 Launched1 April 1944 Commissioned9 May 1944 Stricken19 January 1945 Honou...

 

2011 criminal case United States v. ChoiCourtUnited States District Court for the District of ColumbiaFull case nameUnited States of America v. Daniel Choi Docket nos.1:10-mj-00739ProsecutionAngela S. GeorgeCitation818 F. Supp. 2d 79Case historySubsequent actionsCert. denied, 566 U.S. 1022 (2012)Court membershipJudge sittingRoyce C. Lamberth United States v Choi day 1 United States v. Choi, 818 F. Supp. 2d 79 (D.D.C. 2011), was a federal criminal case in the United States District Cou...

High school in Maryland Not to be confused with Mead Senior High School. This article's factual accuracy may be compromised due to out-of-date information. The reason given is: Some of the courses and clubs are not offered anymore. Please help update this article to reflect recent events or newly available information. (December 2022) Meade Senior High SchoolAddress1100 Clark RoadFort Meade, MD 20755United StatesCoordinates39°7′21″N 76°44′17″W / 39.12250°N 76.73806�...

 

Bagian dari seriPendidikan di Indonesia Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Republik Indonesia Pendidikan anak usia dini TK RA KB PAUD Pendidikan dasar (kelas 1–6) SD MI Paket A Pendidikan dasar (kelas 7–9) SMP MTs Paket B Pendidikan menengah (kelas 10–12) SMA MA SMK MAK Paket C Pendidikan tinggi Perguruan tinggi Pendidikan Vokasi Akademi Akademi komunitas Institut Politeknik Sekolah tinggi Universitas Lain-lain Madrasah Pesantren Sekolah alam Sekolah rumah Sekolah ...