Feasible region

A problem with five linear constraints (in blue, including the non-negativity constraints). In the absence of integer constraints the feasible set is the entire region bounded by blue, but with integer constraints it is the set of red dots.
A closed feasible region of a linear programming problem with three variables is a convex polyhedron.

In mathematical optimization and computer science, a feasible region, feasible set, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints.[1] This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.

For example, consider the problem of minimizing the function with respect to the variables and subject to and Here the feasible set is the set of pairs (x, y) in which the value of x is at least 1 and at most 10 and the value of y is at least 5 and at most 12. The feasible set of the problem is separate from the objective function, which states the criterion to be optimized and which in the above example is

In many problems, the feasible set reflects a constraint that one or more variables must be non-negative. In pure integer programming problems, the feasible set is the set of integers (or some subset thereof). In linear programming problems, the feasible set is a convex polytope: a region in multidimensional space whose boundaries are formed by hyperplanes and whose corners are vertices.

Constraint satisfaction is the process of finding a point in the feasible region.

Convex feasible set

A convex feasible set is one in which a line segment connecting any two feasible points goes through only other feasible points, and not through any points outside the feasible set. Convex feasible sets arise in many types of problems, including linear programming problems, and they are of particular interest because, if the problem has a convex objective function that is to be minimized, it will generally be easier to solve in the presence of a convex feasible set and any local optimum will also be a global optimum.

No feasible set

If the constraints of an optimization problem are mutually contradictory, there are no points that satisfy all the constraints and thus the feasible region is the empty set. In this case the problem has no solution and is said to be infeasible.

Bounded and unbounded feasible sets

A bounded feasible set (top) and an unbounded feasible set (bottom). The set at the bottom continues forever towards the right.

Feasible sets may be bounded or unbounded. For example, the feasible set defined by the constraint set {x ≥ 0, y ≥ 0} is unbounded because in some directions there is no limit on how far one can go and still be in the feasible region. In contrast, the feasible set formed by the constraint set {x ≥ 0, y ≥ 0, x + 2y ≤ 4} is bounded because the extent of movement in any direction is limited by the constraints.

In linear programming problems with n variables, a necessary but insufficient condition for the feasible set to be bounded is that the number of constraints be at least n + 1 (as illustrated by the above example).

If the feasible set is unbounded, there may or may not be an optimum, depending on the specifics of the objective function. For example, if the feasible region is defined by the constraint set {x ≥ 0, y ≥ 0}, then the problem of maximizing x + y has no optimum since any candidate solution can be improved upon by increasing x or y; yet if the problem is to minimize x + y, then there is an optimum (specifically at (x, y) = (0, 0)).

Candidate solution

In optimization and other branches of mathematics, and in search algorithms (a topic in computer science), a candidate solution is a member of the set of possible solutions in the feasible region of a given problem.[2] A candidate solution does not have to be a likely or reasonable solution to the problem—it is simply in the set that satisfies all constraints; that is, it is in the set of feasible solutions. Algorithms for solving various types of optimization problems often narrow the set of candidate solutions down to a subset of the feasible solutions, whose points remain as candidate solutions while the other feasible solutions are henceforth excluded as candidates.

The space of all candidate solutions, before any feasible points have been excluded, is called the feasible region, feasible set, search space, or solution space.[2] This is the set of all possible solutions that satisfy the problem's constraints. Constraint satisfaction is the process of finding a point in the feasible set.

Genetic algorithm

In the case of the genetic algorithm, the candidate solutions are the individuals in the population being evolved by the algorithm.[3]

Calculus

In calculus, an optimal solution is sought using the first derivative test: the first derivative of the function being optimized is equated to zero, and any values of the choice variable(s) that satisfy this equation are viewed as candidate solutions (while those that do not are ruled out as candidates). There are several ways in which a candidate solution might not be an actual solution. First, it might give a minimum when a maximum is being sought (or vice versa), and second, it might give neither a minimum nor a maximum but rather a saddle point or an inflection point, at which a temporary pause in the local rise or fall of the function occurs. Such candidate solutions may be able to be ruled out by use of the second derivative test, the satisfaction of which is sufficient for the candidate solution to be at least locally optimal. Third, a candidate solution may be a local optimum but not a global optimum.

In taking antiderivatives of monomials of the form the candidate solution using Cavalieri's quadrature formula would be This candidate solution is in fact correct except when

Linear programming

A series of linear programming constraints on two variables produce a region of possible values for those variables. Solvable two-variable problems will have a feasible region in the shape of a convex simple polygon if it is bounded. In an algorithm that tests feasible points sequentially, each tested point is in turn a candidate solution.

In the simplex method for solving linear programming problems, a vertex of the feasible polytope is selected as the initial candidate solution and is tested for optimality; if it is rejected as the optimum, an adjacent vertex is considered as the next candidate solution. This process is continued until a candidate solution is found to be the optimum.

References

  1. ^ Beavis, Brian; Dobbs, Ian (1990). Optimisation and Stability Theory for Economic Analysis. New York: Cambridge University Press. p. 32. ISBN 0-521-33605-8.
  2. ^ a b Boyd, Stephen; Vandenberghe, Lieven (2004-03-08). Convex Optimization. Cambridge University Press. ISBN 978-0-521-83378-3.
  3. ^ Whitley, Darrell (1994). "A genetic algorithm tutorial" (PDF). Statistics and Computing. 4 (2): 65–85. doi:10.1007/BF00175354. S2CID 3447126.

Read other articles:

Katedral SantiagoGereja Katedral Metropolitan Santo Yakobus di Santiago de ChileSpanyol: Catedral Metropolitana de Santiagocode: es is deprecated Katedral SantiagoLokasiSantiago de ChileNegara ChiliDenominasiGereja Katolik RomaSejarahDedikasiSanto YakobusArsitekturStatusKatedralStatus fungsionalAktifArsitekJoaquín Toesca dan Ignacio CremonesiGayaneo-GotikPeletakan batu pertama1748Selesai1906AdministrasiKeuskupan AgungKeuskupan Agung Santiago de Chile Katedral Metropolitan Santiago (Span...

 

Anton de KomLahirCornellis Gerrad Anton de Kom22 Februari 1898Paramaribo, SurinameMeninggal24 April 1945Sandbostel, JermanKarya terkenalPenulis Buku Wij Slaven Van Suriname (We Slaves Of Suriname)Suami/istriPetronella BorsboomAnakCees De KomOrang tuaAdolf De Kom dan Judith Jacoba Dulder Patung Anton de Kom Anton De Kom nama lengkap Cornellis Gerrad Anton De Kom (22 Februari 1898 – 24 April 1945) adalah Penulis, Militer dan Aktivis Suriname. Namanya diabadikan sebagai nama Uni...

 

  البرمجيات في المصلحة العامة البرمجيات في المصلحة العامة‌ البلد الولايات المتحدة  المقر الرئيسي نيويورك  تاريخ التأسيس 16 يونيو 1997[1]  الرئيس دايل جاربي (1 أغسطس 2006–11 أغسطس 2016)[2]مارتن متشلنير (11 أغسطس 2016–13 أغسطس 2018)[3]  المالية إجمالي الإيرادات 635312 �...

Mario Desiati nel 2018 al Festival internazionale del giornalismo di Perugia Premio Strega 2022 Mario Desiati (Locorotondo, 13 maggio 1977) è uno scrittore, poeta e giornalista italiano. Indice 1 Biografia 2 Opere principali 2.1 Prosa 2.2 Poesia 2.3 Curatele 2.4 Premi e riconoscimenti 3 Note 4 Altri progetti 5 Collegamenti esterni Biografia Nato a Locorotondo (Bari) nel 1977[1], ma cresciuto nella vicina Martina Franca (in provincia di Taranto)[2], risiede stabilmente a Roma,...

 

Stan Lazaridis Nazionalità  Australia Altezza 175 cm Calcio Ruolo Difensore, centrocampista Termine carriera 2008 Carriera Squadre di club1 1992-1995 West Adelaide73 (5)1995-1999 West Ham Utd69 (3)1999-2006 Birmingham City191 (8)2006-2008 Perth Glory8 (0) Nazionale 1993-2006 Australia60 (0) Palmarès  Coppa d'Oceania Oro Tahiti 2000 Oro Australia 2004  Confederations Cup Argento Arabia Saudita 1997 Bronzo Corea del Sud-Giappone 2001 1 I due numeri indicano...

 

Untuk kegunaan lain, lihat Hudson's Bay (disambiguasi). Hudson's Bay CompanyCompagnie de la Baie d'HudsonJenisTerbuka[1]Kode emitenTSX: HBCDidirikanLondon, Inggris(2 Mei 1670)KantorpusatSimpson TowerToronto, Ontario, KanadaTokohkunciRichard Baker,[2] Governor & Executive Chairman[3]Bonnie Brooks, Vice Chairman[4] Elizabeth 'Liz' Rodbell, President[4][5]Pendapatan $5,223 miliar CAD (2014)Laba bersih $ 258,1 juta CAD (2014)Total aset $7,9...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

American actor (born 1947) Ted DansonDanson in 2018BornEdward Bridge Danson III (1947-12-29) December 29, 1947 (age 76)San Diego, California, U.S.EducationStanford UniversityCarnegie Mellon University (BFA)OccupationsActorproduceractivistYears active1975–presentKnown forCheersThree Men and a BabyThree Men and a Little LadyBeckerThe Good PlaceSpouses Randall Gosch ​ ​(m. 1970; div. 1975)​ Cassandra Coates ​ ​(...

 

Artikel utama: Piala Asia AFC 2015 Pertandingan-pertandingan kualifikasi Piala Asia AFC 2015 akan menentukan tim-tim peserta untuk Piala Asia AFC 2015. Total 16 tim akan bertarung di Piala Asia AFC 2015. Lima tempat berikut ditentukan di luar pertandingan kualifikasi. Negara penyelenggara dan juara kedua Piala Asia AFC 2011:  Australia; Juara pertama Piala Asia AFC 2011:  Jepang Juara ketiga Piala Asia AFC 2011:  Korea Selatan; Juara Piala Tantangan AFC 2012:  Korea Utara;...

Siam Malaysiaชาวมาเลเซียเชื้อสายไทย Orang Siam MalaysiaDaerah dengan populasi signifikanSemenanjung Malaysia (terutama negara-negara bagian di wilayah utara) Perak: 2,000 (2008)[1] Perlis: 6,000 (2008)[2] Kedah: 30,000 (2007)[3] Kelantan: 13,000 (2008)[4]BahasaThai Selatan, dialek Takbai, Thai standar, Melayu Kelantan, Melayu standar[5]AgamaUmumnya Buddha Theravada dengan minoritas Islam Su...

 

State highway in Wisconsin, United States State Trunk Highway 77WIS 77 highlighted in redRoute informationMaintained by WisDOTLength139.94 mi[1] (225.21 km)Major junctionsWest end MN 48 in DanburyMajor intersections WIS 35 in Danbury US 53 in Minong US 63 / WIS 27 in Hayward WIS 13 in Mellen WIS 122 in Upson US 51 in Hurley East end Bus. US 2 in Hurley LocationCountryUnited StatesStateWisconsinCountiesBurnett, ...

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要擴充。 (2013年1月1日)请協助改善这篇條目,更進一步的信息可能會在討論頁或扩充请求中找到。请在擴充條目後將此模板移除。 此條目需要补充更多来源。 (2013年1月1日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的...

Radio station in Pittston, PennsylvaniaWITKPittston, PennsylvaniaBroadcast areaScranton/Wilkes-BarreFrequency1550 kHzBrandingLife Talk 1550Life Talk 94.7ProgrammingFormatChristianOwnershipOwnerWilkins Communications Network(Steel City Radio, Inc.)Sister stationsKLNG, WLMR, WSKY (AM), WFAM, WBXR, WELP, KCNW, WWNL, WBRI, KXKS, WYYC, WIJD, WNVY, WVTJ, WCPCHistoryFormer call signsWKQV, WARD, WPTSTechnical informationFacility ID70868ClassBPower10,000 watts day500 watts nightTransmitter coordinates...

 

16-я пехотная дивизия Годы существования 1806—1918 Страна  Российская империя Входит в 6-й армейский корпус Тип Пехота Дислокация Белосток 16-я пехотная дивизия — пехотное соединение в составе Русской императорской армии. Штаб дивизии: Белосток (1883 — 1914). С середины 1890-х �...

 

قائمة الأعلام المتعلقة بأرمينيا. الأعلام الوطنية العلم التاريخ الاستخدام الوصف 1918 (1990)– علم أرمينيا ثلاثة شرائط أفقية من الأحمر والأزرق والبرتقالي 1918 (1990)– علم أرمينيا (عمودي) علم الرئيس العلم التاريخ الاستخدام الوصف 1990–الآن علم رئيس أرمينيا الأعلام العسكرية العلم التار...

American technology magazine EWeekEditor-in-ChiefJames Maguire (2021-)CategoriesComputer magazine, Business magazineFrequencyonline onlyCirculation20M pageviews/yearFounded1983Final issue2012CompanyTechnologyAdviceCountryUnited StatesBased inNashville, TNLanguageEnglishWebsiteeweek.comISSN1530-6283 eWeek (Enterprise Newsweekly, stylized as eWEEK), formerly PCWeek,[1] is a technology and business magazine. Previously owned by QuinStreet; Nashville, Tennessee marketing company Technolog...

 

Overview of racism in the State of Israel Racism in Israel encompasses all forms and manifestations of racism experienced in Israel, irrespective of the colour or creed of the perpetrator and victim, or their citizenship, residency, or visitor status. More specifically in the Israeli context, racism in Israel refers to racism directed against Israeli Arabs by Israeli Jews,[1] intra-Jewish racism between the various Jewish ethnic divisions (in particular against Ethiopian Jews),[2...

 

OK Liga 2003-2004 Competizione OK Liga Sport hockey su pista Edizione 35ª Organizzatore RFEP Date dall'11 ottobre 2003al 25 giugno 2004 Luogo  Spagna Partecipanti 16 Formula Girone unico+Play-off Risultati Vincitore  Barcellona(17º titolo) Retrocessioni  Cibeles Alcobendas Tordera Cronologia della competizione 2002-2003 2004-2005 Manuale L'OK Liga 2003-2004 è stata la 35ª edizione del torneo di primo livello del campionato spagnolo di hockey su pista; disputa...

American special effects artist Gordon JenningsBornHenry Gordon Jennings1896Salt Lake City, Utah, United StatesDiedJanuary 11, 1953 (aged 56–57)Hollywood, California, United StatesOccupationSpecial effects artistYears active1919–1953 Gordon Jennings, A.S.C. (1896 – January 11, 1953) was an American special effects artist. He received seven Academy Awards (mainly for Best Special Effects) and was nominated for eight more in the same category. After starting 1919 in ...

 

CAPN1 بنى متوفرة بنك بيانات البروتينOrtholog search: PDBe RCSB قائمة رموز معرفات بنك بيانات البروتين 1ZCM, 2ARY معرفات أسماء بديلة CAPN1, CANP, CANP1, CANPL1, muCANP, muCL, SPG76, calpain 1 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 114220 MGI: MGI:88263 HomoloGene: 3800 GeneCards: 823 علم الوجود الجيني وظائف جزيئية • cysteine-type peptid...