Inflection point

Plot of y = x3 with an inflection point at (0,0), which is also a stationary point.
The roots, stationary points, inflection point and concavity of a cubic polynomial x3 − 6x2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives.

In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection (rarely inflexion) is a point on a smooth plane curve at which the curvature changes sign. In particular, in the case of the graph of a function, it is a point where the function changes from being concave (concave downward) to convex (concave upward), or vice versa.

For the graph of a function f of differentiability class C2 (its first derivative f', and its second derivative f'', exist and are continuous), the condition f'' = 0 can also be used to find an inflection point since a point of f'' = 0 must be passed to change f'' from a positive value (concave upward) to a negative value (concave downward) or vice versa as f'' is continuous; an inflection point of the curve is where f'' = 0 and changes its sign at the point (from positive to negative or from negative to positive).[1] A point where the second derivative vanishes but does not change its sign is sometimes called a point of undulation or undulation point.

In algebraic geometry an inflection point is defined slightly more generally, as a regular point where the tangent meets the curve to order at least 3, and an undulation point or hyperflex is defined as a point where the tangent meets the curve to order at least 4.

Definition

Inflection points in differential geometry are the points of the curve where the curvature changes its sign.[2][3]

For example, the graph of the differentiable function has an inflection point at (x, f(x)) if and only if its first derivative f' has an isolated extremum at x. (this is not the same as saying that f has an extremum). That is, in some neighborhood, x is the one and only point at which f' has a (local) minimum or maximum. If all extrema of f' are isolated, then an inflection point is a point on the graph of f at which the tangent crosses the curve.

A falling point of inflection is an inflection point where the derivative is negative on both sides of the point; in other words, it is an inflection point near which the function is decreasing. A rising point of inflection is a point where the derivative is positive on both sides of the point; in other words, it is an inflection point near which the function is increasing.

For a smooth curve given by parametric equations, a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e., changes sign.

For a smooth curve which is a graph of a twice differentiable function, an inflection point is a point on the graph at which the second derivative has an isolated zero and changes sign.

In algebraic geometry, a non singular point of an algebraic curve is an inflection point if and only if the intersection number of the tangent line and the curve (at the point of tangency) is greater than 2. The main motivation of this different definition, is that otherwise the set of the inflection points of a curve would not be an algebraic set. In fact, the set of the inflection points of a plane algebraic curve are exactly its non-singular points that are zeros of the Hessian determinant of its projective completion.

Plot of f(x) = sin(2x) from −π/4 to 5π/4; the second derivative is f″(x) = –4sin(2x), and its sign is thus the opposite of the sign of f. Tangent is blue where the curve is convex (above its own tangent), green where concave (below its tangent), and red at inflection points: 0, π/2 and π

Conditions

A necessary but not sufficient condition

For a function f, if its second derivative f″(x) exists at x0 and x0 is an inflection point for f, then f″(x0) = 0, but this condition is not sufficient for having a point of inflection, even if derivatives of any order exist. In this case, one also needs the lowest-order (above the second) non-zero derivative to be of odd order (third, fifth, etc.). If the lowest-order non-zero derivative is of even order, the point is not a point of inflection, but an undulation point. However, in algebraic geometry, both inflection points and undulation points are usually called inflection points. An example of an undulation point is x = 0 for the function f given by f(x) = x4.

In the preceding assertions, it is assumed that f has some higher-order non-zero derivative at x, which is not necessarily the case. If it is the case, the condition that the first nonzero derivative has an odd order implies that the sign of f'(x) is the same on either side of x in a neighborhood of x. If this sign is positive, the point is a rising point of inflection; if it is negative, the point is a falling point of inflection.

Sufficient conditions

  1. A sufficient existence condition for a point of inflection in the case that f(x) is k times continuously differentiable in a certain neighborhood of a point x0 with k odd and k ≥ 3, is that f(n)(x0) = 0 for n = 2, ..., k − 1 and f(k)(x0) ≠ 0. Then f(x) has a point of inflection at x0.
  2. Another more general sufficient existence condition requires f″(x0 + ε) and f″(x0ε) to have opposite signs in the neighborhood of x0 (Bronshtein and Semendyayev 2004, p. 231).

Categorization of points of inflection

y = x4x has a 2nd derivative of zero at point (0,0), but it is not an inflection point because the fourth derivative is the first higher order non-zero derivative (the third derivative is zero as well).

Points of inflection can also be categorized according to whether f'(x) is zero or nonzero.

  • if f'(x) is zero, the point is a stationary point of inflection
  • if f'(x) is not zero, the point is a non-stationary point of inflection

A stationary point of inflection is not a local extremum. More generally, in the context of functions of several real variables, a stationary point that is not a local extremum is called a saddle point.

An example of a stationary point of inflection is the point (0, 0) on the graph of y = x3. The tangent is the x-axis, which cuts the graph at this point.

An example of a non-stationary point of inflection is the point (0, 0) on the graph of y = x3 + ax, for any nonzero a. The tangent at the origin is the line y = ax, which cuts the graph at this point.

Functions with discontinuities

Some functions change concavity without having points of inflection. Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function is concave for negative x and convex for positive x, but it has no points of inflection because 0 is not in the domain of the function.

Functions with inflection points whose second derivative does not vanish

Some continuous functions have an inflection point even though the second derivative is never 0. For example, the cube root function is concave upward when x is negative, and concave downward when x is positive, but has no derivatives of any order at the origin.

See also

References

  1. ^ Stewart, James (2015). Calculus (8 ed.). Boston: Cengage Learning. p. 281. ISBN 978-1-285-74062-1.
  2. ^ Problems in mathematical analysis. Baranenkov, G. S. Moscow: Mir Publishers. 1976 [1964]. ISBN 5030009434. OCLC 21598952.{{cite book}}: CS1 maint: others (link)
  3. ^ Bronshtein; Semendyayev (2004). Handbook of Mathematics (4th ed.). Berlin: Springer. p. 231. ISBN 3-540-43491-7.

Sources

Read other articles:

SiprusΚύπροςcode: el is deprecated  (Greek)Kıbrıscode: tr is deprecated   (Turkish)Citra satelit Siprus pada 2022Lokasi SiprusGeografiLokasiLaut MediteraniaKoordinat35°N 33°E / 35°N 33°E / 35; 33Koordinat: 35°N 33°E / 35°N 33°E / 35; 33 Kota terbesarNikosia Luas9.251 km2Garis pantai648 kmTitik tertinggiGunung Olympus (1.952 m)PemerintahanNegaraRepublik SiprusIbu kota dan kota terbesarNikosi...

 

Carrie FisherFisher tahun 2013LahirCarrie Frances Fisher(1956-10-21)21 Oktober 1956Beverly Hills, California, A.S.Meninggal27 Desember 2016(2016-12-27) (umur 60)[1]Los Angeles, California, A.S.PekerjaanAktris, penulis naskah, pengarang, produser, pembicaraTahun aktif1973–2016Suami/istriPaul Simon ​ ​(m. 1983; c. 1984)​PasanganBryan Lourd (1991–1994)AnakBillie LourdOrang tuaEddie FisherDebbie ReynoldsKerabat Todd Fisher (ad...

 

French Republic regional department CantonCantons of metropolitan FranceCategoryFourth-level administrative divisionLocationRegions of FranceNumber2,054 (as of 2015)GovernmentDepartmental councilThis article is part of a series on theAdministrativedivisions of France Administrative divisions Regions Departments Arrondissements Cantons Intercommunality Métropole Communauté urbaine Communauté d'agglomération Communauté de communes Communes Associated communes Municipal arrondissements Over...

Benny Utama Bupati Pasaman ke-16 dan ke-18Masa jabatan26 Februari 2021 – 3 November 2023WakilSabar AS PendahuluYusuf LubisPenggantiSabar AS (Plt.)Masa jabatan29 Agustus 2010 – 29 Agustus 2015WakilDaniel Lubis PendahuluYusuf LubisPenggantiA Syafei Siregar (Plh.)Anggota DPRD Sumatera Barat Fraksi GolkarMasa jabatan28 Agustus 2019 – 11 September 2020[1] PenggantiZulkenedi Said[2]Wakil Bupati Pasaman ke-1Masa jabatan2000–2004 PendahuluTid...

 

Eduardo García Nazionalità  Uruguay Calcio Ruolo Portiere Termine carriera 1940 Carriera Squadre di club1 1926-1927 Belgrano? (-?)1928 Sud América? (-?)1929-1940 Nacional? (-?) Nazionale 1929-1934 Uruguay3 (-?) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campionato.Il simbolo → indica un trasferimento in prestito. Statistiche aggiornate al 22 maggio 2019 Modifica dati su Wikidata · Manuale Eduardo García (Montevideo, 20 fe...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Universitas Dar es Salaam – berita · surat kabar · buku · cendekiawan · JSTORUniversitas Dar es SalaamUniversity of Dar es Salaam (Inggris) Chuo Kikuu cha Dar es Salaam (Swahili)Berkas:University of Dar ...

Запрос «Пугачёва» перенаправляется сюда; см. также другие значения. Алла Пугачёва На фестивале «Славянский базар в Витебске», 2016 год Основная информация Полное имя Алла Борисовна Пугачёва Дата рождения 15 апреля 1949(1949-04-15) (75 лет) Место рождения Москва, СССР[1]...

 

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、�...

 

Turkish freediver and record holder This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This biography of a living person relies too much on references to primary sources. Please help by adding secondary or tertiary sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately, especially if potentially libelous or harmful.Find sources:...

Radio station in Owosso, MichiganWRSROwosso, MichiganBroadcast areaFlint, MichiganFrequency103.9 MHzBranding103.9 The FoxProgrammingFormatClassic rockAffiliationsDetroit Lions Radio Network[1]OwnershipOwnerKrol Communications Inc.HistoryFirst air date1965 (as WOAP-FM)Former call signsWAHV (2/5/96-5/15/98)WMZX (1/15/89-2/5/96)WOAP-FM (1965-1/15/89)Call sign meaningWRSR-FM: We aRe Solid RockTechnical informationFacility ID41681ClassAERP2,850 wattsHAAT147 meters (482 ft)Transmitter ...

 

Emberá language spoken in Colombia ChamiChamí EmberáNative toColombiaNative speakers7,800 (2001–2014)[1]Language familyChocoan EmberáSouthernChamiLanguage codesISO 639-3Either:cmi – Chamitdc – TadóGlottologuppe1440ELPSouthern Emberá Chamí Emberá a.k.a. Chami is an Embera language of Colombia. Phonology Consonants Bilabial Alveolar Palatal Velar Stop plain p ⟨p⟩ t ⟨t⟩ k ⟨k⟩ voiced b ⟨b⟩ ...

 

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 ...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

English peer, politician and diplomat (1797–1863) The Most HonourableThe Marquess of NormanbyKG GCB GCH PCPortrait by John JacksonLord Lieutenant of IrelandIn office29 April 1835 – 13 March 1839MonarchsWilliam IV VictoriaPrime MinisterThe Viscount MelbournePreceded byThe Earl of HaddingtonSucceeded byViscount EbringtonHome SecretaryIn office30 August 1839 – 30 August 1841MonarchVictoriaPrime MinisterThe Viscount MelbournePreceded byLord John RussellSucceede...

 

American political philosopher (1938–2002) Robert NozickNozick in 1977Born(1938-11-16)November 16, 1938New York City, U.S.DiedJanuary 23, 2002(2002-01-23) (aged 63)Cambridge, Massachusetts, U.S.EducationColumbia University (BA)Princeton University (PhD)Oxford UniversityEra20th-century philosophyRegionWestern philosophySchoolAnalyticLibertarianismDoctoral advisorsCarl Gustav HempelMain interestsPolitical philosophy, ethics, epistemologyNotable ideasUtility monster, experience machine, ...

此條目需要补充更多来源。 (2022年5月20日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:陶笛 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 此條目偏重在某些見解、事件或爭議上。 (2024年1月4日)請協助建立更平衡的陳述以符...

 

Aslacton WindmillThe derelict mill in 2007OriginMill nameAslacton MillMill locationTM 1575 9037Coordinates52°28′07″N 1°10′29″E / 52.46861°N 1.17472°E / 52.46861; 1.17472Operator(s)PrivateYear built1834InformationPurposeCorn millTypeTower millStoreysFour storeysNo. of sailsFour sailsType of sailsDouble Patent sailsWindingFantailFantail bladesSix bladesAuxiliary powerSteam engine, later replaced by an oil engineNo. of pairs of millstonesTwo pairs Aslacton Mi...

 

Piala Raja Spanyol 1980–1981Negara SpanyolJumlah peserta138Juara bertahanReal MadridJuaraBarcelona(gelar ke-19)Tempat keduaSporting GijónJumlah pertandingan273Jumlah gol781 (2.86 per pertandingan)← 1979–1980 1981–1982 → Piala Raja Spanyol 1980–1981 adalah edisi ke-77 dari penyelenggaraan Piala Raja Spanyol, turnamen sepak bola di Spanyol dengan sistem piala. Edisi ini dimenangkan oleh Barcelona setelah mengalahkan Sporting Gijón pada pertandingan final dengan skor 3–1. Fi...

1919 Liberian general election ← 1915 May 1919 1923 → Presidential election   Nominee Charles D. B. King Party TWP President before election Daniel Edward Howard TWP Elected President Charles D. B. King TWP Politics of Liberia Constitution 1847 Constitution 1986 Constitution Executive President Joseph Boakai Vice President Jeremiah Koung Cabinet Legislature Senate President Pro Tempore House of Representatives Speaker Judiciary Supreme Court Chief Justice: Sie-A-Ny...

 

For similarly named places, see Banda. Place in UgandaBandaBandaLocation in KampalaCoordinates: 00°21′14″N 32°37′57″E / 0.35389°N 32.63250°E / 0.35389; 32.63250Country UgandaRegionCentral UgandaDistrictKampala DistrictDivisionNakawa DivisionElevation4,070 ft (1,240 m) Banda is a hill that lies in Nakawa Division, within Kampala, the capital of Uganda. Banda also refers to the neighborhoods on the slopes of the hill and between Banda Hill and ...