Ethane

Ethane
Skeletal formula of ethane with all hydrogens and carbons shown
Skeletal formula of ethane with all hydrogens and carbons shown
Skeletal formula of ethane with all implicit carbons shown, and all explicit hydrogens added
Skeletal formula of ethane with all implicit carbons shown, and all explicit hydrogens added
Ball and stick model of ethane
Ball and stick model of ethane
Spacefill model of ethane
Spacefill model of ethane
Names
Preferred IUPAC name
Ethane[1]
Systematic IUPAC name
Dicarbane (never recommended[2])
Other names
  • Dimethyl (CH3CH3, Me2 or (CH3)2)
  • Ethyl hydride
Identifiers
3D model (JSmol)
1730716
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.741 Edit this at Wikidata
EC Number
  • 200-814-8
212
MeSH Ethane
RTECS number
  • KH3800000
UNII
UN number 1035
  • InChI=1S/C2H6/c1-2/h1-2H3 checkY
    Key: OTMSDBZUPAUEDD-UHFFFAOYSA-N checkY
  • CC
Properties
C2H6
Molar mass 30.070 g·mol−1
Appearance Colorless gas
Odor Odorless
Density
  • 1.3562 kg/m3 (gas at 0 °C)[3]

544.0 kg/m3 (liquid at -88,5 °C)
206 kg/m3 (at critical point 305.322 K)

Melting point −182.8 °C; −296.9 °F; 90.4 K
Boiling point −88.5 °C; −127.4 °F; 184.6 K
Critical point (T, P) 305.32 K (32.17 °C; 89.91 °F) 48.714 bars (4,871.4 kPa)
56.8 mg/L[4]
Vapor pressure 3.8453 MPa (at 21.1 °C)
19 nmol Pa−1 kg−1
Acidity (pKa) 50
Basicity (pKb) −36
Conjugate acid Ethanium
-37.37·10−6 cm3/mol
Thermochemistry
52.14± 0.39 J K−1 mol−1 at 298 Kelvin[5]
−84 kJ mol−1
−1561.0–−1560.4 kJ mol−1
Hazards
GHS labelling:
GHS02: Flammable
Danger
H220, H280
P210, P410+P403
NFPA 704 (fire diamond)
Flash point −135 °C (−211 °F; 138 K)
472 °C (882 °F; 745 K)
Explosive limits 2.9–13%
Safety data sheet (SDS) inchem.org
Related compounds
Related alkanes
Related compounds
Supplementary data page
Ethane (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Ethane (US: /ˈɛθn/ ETH-ayn, UK: /ˈθn/ EE-thayn) is a naturally occurring organic chemical compound with chemical formula C
2
H
6
. At standard temperature and pressure, ethane is a colorless, odorless gas. Like many hydrocarbons, ethane is isolated on an industrial scale from natural gas and as a petrochemical by-product of petroleum refining. Its chief use is as feedstock for ethylene production. The ethyl group is formally, although rarely practically, derived from ethane.

History

Ethane was first synthesised in 1834 by Michael Faraday, applying electrolysis of a potassium acetate solution. He mistook the hydrocarbon product of this reaction for methane and did not investigate it further.[6] The process is now called Kolbe electrolysis:

CH3COO → CH3• + CO2 + e
CH3• + •CH3 → C2H6

During the period 1847–1849, in an effort to vindicate the radical theory of organic chemistry, Hermann Kolbe and Edward Frankland produced ethane by the reductions of propionitrile (ethyl cyanide)[7] and ethyl iodide[8] with potassium metal, and, as did Faraday, by the electrolysis of aqueous acetates. They mistook the product of these reactions for the methyl radical (CH3), of which ethane (C2H6) is a dimer.

This error was corrected in 1864 by Carl Schorlemmer, who showed that the product of all these reactions was in fact ethane.[9] Ethane was discovered dissolved in Pennsylvanian light crude oil by Edmund Ronalds in 1864.[10][11]

Properties

At standard temperature and pressure, ethane is a colorless, odorless gas. It has a boiling point of −88.5 °C (−127.3 °F) and melting point of −182.8 °C (−297.0 °F). Solid ethane exists in several modifications.[12] On cooling under normal pressure, the first modification to appear is a plastic crystal, crystallizing in the cubic system. In this form, the positions of the hydrogen atoms are not fixed; the molecules may rotate freely around the long axis. Cooling this ethane below ca. 89.9 K (−183.2 °C; −297.8 °F) changes it to monoclinic metastable ethane II (space group P 21/n).[13] Ethane is only very sparingly soluble in water.

The bond parameters of ethane have been measured to high precision by microwave spectroscopy and electron diffraction: rC−C = 1.528(3) Å, rC−H = 1.088(5) Å, and ∠CCH = 111.6(5)° by microwave and rC−C = 1.524(3) Å, rC−H = 1.089(5) Å, and ∠CCH = 111.9(5)° by electron diffraction (the numbers in parentheses represents the uncertainties in the final digits).[14]

Ethane (shown in Newman projection) barrier to rotation about the carbon-carbon bond. The curve is potential energy as a function of rotational angle. Energy barrier is 12 kJ/mol or about 2.9 kcal/mol.[15]

Rotating a molecular substructure about a twistable bond usually requires energy. The minimum energy to produce a 360° bond rotation is called the rotational barrier.

Ethane gives a classic, simple example of such a rotational barrier, sometimes called the "ethane barrier". Among the earliest experimental evidence of this barrier (see diagram at left) was obtained by modelling the entropy of ethane.[16] The three hydrogens at each end are free to pinwheel about the central carbon–carbon bond when provided with sufficient energy to overcome the barrier. The physical origin of the barrier is still not completely settled,[17] although the overlap (exchange) repulsion[18] between the hydrogen atoms on opposing ends of the molecule is perhaps the strongest candidate, with the stabilizing effect of hyperconjugation on the staggered conformation contributing to the phenomenon.[19] Theoretical methods that use an appropriate starting point (orthogonal orbitals) find that hyperconjugation is the most important factor in the origin of the ethane rotation barrier.[20][21]

As far back as 1890–1891, chemists suggested that ethane molecules preferred the staggered conformation with the two ends of the molecule askew from each other.[22][23][24][25]

Atmospheric and extraterrestrial

A photograph of Titan's northern latitudes. The dark features are hydrocarbon lakes containing ethane

Ethane occurs as a trace gas in the Earth's atmosphere, currently having a concentration at sea level of 0.5 ppb.[26] Global ethane quantities have varied over time, likely due to flaring at natural gas fields.[27] Global ethane emission rates declined from 1984 to 2010,[27] though increased shale gas production at the Bakken Formation in the U.S. has arrested the decline by half.[28][29]

Although ethane is a greenhouse gas, it is much less abundant than methane, has a lifetime of only a few months compared to over a decade,[30] and is also less efficient at absorbing radiation relative to mass. In fact, ethane's global warming potential largely results from its conversion in the atmosphere to methane.[31] It has been detected as a trace component in the atmospheres of all four giant planets, and in the atmosphere of Saturn's moon Titan.[32]

Atmospheric ethane results from the Sun's photochemical action on methane gas, also present in these atmospheres: ultraviolet photons of shorter wavelengths than 160 nm can photo-dissociate the methane molecule into a methyl radical and a hydrogen atom. When two methyl radicals recombine, the result is ethane:

CH4  →  CH3• + •H
CH3• + •CH3  →  C2H6

In Earth's atmosphere, hydroxyl radicals convert ethane to methanol vapor with a half-life of around three months.[30]

It is suspected that ethane produced in this fashion on Titan rains back onto the moon's surface, and over time has accumulated into hydrocarbon seas covering much of the moon's polar regions. In mid-2005, the Cassini orbiter discovered Ontario Lacus in Titan's south polar regions. Further analysis of infrared spectroscopic data presented in July 2008[33] provided additional evidence for the presence of liquid ethane in Ontario Lacus. Several significantly larger hydrocarbon lakes, Ligeia Mare and Kraken Mare being the two largest, were discovered near Titan's north pole using radar data gathered by Cassini. These lakes are believed to be filled primarily by a mixture of liquid ethane and methane.

In 1996, ethane was detected in Comet Hyakutake,[34] and it has since been detected in some other comets. The existence of ethane in these distant solar system bodies may implicate ethane as a primordial component of the solar nebula from which the sun and planets are believed to have formed.

In 2006, Dale Cruikshank of NASA/Ames Research Center (a New Horizons co-investigator) and his colleagues announced the spectroscopic discovery of ethane on Pluto's surface.[35]

Chemistry

The reactions of ethane involve chiefly free radical reactions. Ethane can react with the halogens, especially chlorine and bromine, by free-radical halogenation. This reaction proceeds through the propagation of the ethyl radical:[36]

Cl2  →  2 Cl•
C2H6• + Cl•  →  C2H5• + HCl
C2H5• + Cl2  →  C2H5Cl + Cl•
Cl• + C2H6  →  C2H5• + HCl

The combustion of ethane releases 1559.7 kJ/mol, or 51.9 kJ/g, of heat, and produces carbon dioxide and water according to the chemical equation:

2 C2H6 + 7 O2  →  4 CO2 + 6 H2O + 3120 kJ

Combustion may also occur without an excess of oxygen, yielding carbon monoxide, acetaldehyde, methane, methanol, and ethanol. At higher temperatures, especially in the range 600–900 °C (1,112–1,652 °F), ethylene is a significant product:

2 C2H6 + O2 → 2 C2H4 + 2 H2O

Such oxidative dehydrogenation reactions are relevant to the production of ethylene.[37]

Production

After methane, ethane is the second-largest component of natural gas. Natural gas from different gas fields varies in ethane content from less than 1% to more than 6% by volume. Prior to the 1960s, ethane and larger molecules were typically not separated from the methane component of natural gas, but simply burnt along with the methane as a fuel. Today, ethane is an important petrochemical feedstock and is separated from the other components of natural gas in most well-developed gas fields. Ethane can also be separated from petroleum gas, a mixture of gaseous hydrocarbons produced as a byproduct of petroleum refining.

Ethane is most efficiently separated from methane by liquefying it at cryogenic temperatures. Various refrigeration strategies exist: the most economical process presently in wide use employs a turboexpander, and can recover more than 90% of the ethane in natural gas. In this process, chilled gas is expanded through a turbine, reducing the temperature to approximately −100 °C (−148 °F). At this low temperature, gaseous methane can be separated from the liquefied ethane and heavier hydrocarbons by distillation. Further distillation then separates ethane from the propane and heavier hydrocarbons.

Usage

The chief use of ethane is the production of ethylene (ethene) by steam cracking. Steam cracking of ethane is fairly selective for ethylene, while the steam cracking of heavier hydrocarbons yields a product mixture poorer in ethylene and richer in heavier alkenes (olefins), such as propene (propylene) and butadiene, and in aromatic hydrocarbons.

Ehane has been investigated as a feedstock for other commodity chemicals. Oxidative chlorination of ethane has long appeared to be a potentially more economical route to vinyl chloride than ethylene chlorination. Many patent exist on this theme, but poor selectivity for vinyl chloride and corrosive reaction conditions have discouraged the commercialization of most of them. Presently, INEOS operates a 1000 t/a (tonnes per annum) ethane-to-vinyl chloride pilot plant at Wilhelmshaven in Germany.

SABIC operates a 34,000 t/a plant at Yanbu to produce acetic acid by ethane oxidation.[38] The economic viability of this process may rely on the low cost of ethane near Saudi oil fields, and it may not be competitive with methanol carbonylation elsewhere in the world.[39]

Ethane can be used as a refrigerant in cryogenic refrigeration systems.

In the laboratory

On a much smaller scale, in scientific research, liquid ethane is used to vitrify water-rich samples for cryo-electron microscopy. A thin film of water quickly immersed in liquid ethane at −150 °C or colder freezes too quickly for water to crystallize. Slower freezing methods can generate cubic ice crystals, which can disrupt soft structures by damaging the samples and reduce image quality by scattering the electron beam before it can reach the detector.

Health and safety

At room temperature, ethane is an extremely flammable gas. When mixed with air at 3.0%–12.5% by volume, it forms an explosive mixture.

Ethane is not a carcinogen.[40]

See also

References

  1. ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 133. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4. The saturated unbranched acyclic hydrocarbons C2H6, C3H8, and C4H10 have the retained names ethane, propane, and butane, respectively.
  2. ^ IUPAC 2014, p. 4. "Similarly, the retained names 'ethane', 'propane', and 'butane' were never replaced by systematic names 'dicarbane', 'tricarbane', and 'tetracarbane' as recommended for analogues of silane, 'disilane'; phosphane, 'triphosphane'; and sulfane, 'tetrasulfane'."
  3. ^ "Ethane – Compound Summary". PubChem Compound. US: National Center for Biotechnology Information. 16 September 2004. Retrieved 7 December 2011.
  4. ^ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton, Florida: CRC Press. p. 8.88. ISBN 0-8493-0486-5.
  5. ^ "Ethane". webbook.nist.gov. National Institute of Standards and Technology. Retrieved 2024-05-16.
  6. ^ Faraday, Michael (1834). "Experimental researches in electricity: Seventh series". Philosophical Transactions. 124: 77–122. Bibcode:1834RSPT..124...77F. doi:10.1098/rstl.1834.0008. S2CID 116224057.
  7. ^ Kolbe, Hermann; Frankland, Edward (1849). "On the products of the action of potassium on cyanide of ethyl". Journal of the Chemical Society. 1: 60–74. doi:10.1039/QJ8490100060.
  8. ^ Frankland, Edward (1850). "On the isolation of the organic radicals". Journal of the Chemical Society. 2 (3): 263–296. doi:10.1039/QJ8500200263.
  9. ^ Schorlemmer, Carl (1864). "Ueber die Identität des Aethylwasserstoffs und des Methyls". Annalen der Chemie und Pharmacie. 132 (2): 234–238. doi:10.1002/jlac.18641320217.
  10. ^ Roscoe, H.E.; Schorlemmer, C. (1881). Treatise on Chemistry. Vol. 3. Macmillan. pp. 144–145.
  11. ^ Watts, H. (1868). Dictionary of Chemistry. Vol. 4. p. 385.
  12. ^ Van Nes, G.J.H.; Vos, A. (1978). "Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. I. Single-crystal X-ray structure determinations of two modifications of ethane" (PDF). Acta Crystallographica Section B. 34 (6): 1947. Bibcode:1978AcCrB..34.1947V. doi:10.1107/S0567740878007037. S2CID 55183235.
  13. ^ "Ethane as a solid". Retrieved 2019-12-10.
  14. ^ Harmony, Marlin D. (1990-11-15). "The equilibrium carbon–carbon single-bond length in ethane". The Journal of Chemical Physics. 93 (10): 7522–7523. Bibcode:1990JChPh..93.7522H. doi:10.1063/1.459380. ISSN 0021-9606.
  15. ^ J, McMurry (2012). Organic chemistry (8 ed.). Belmont, CA: Brooks. p. 95. ISBN 9780840054449.
  16. ^ Kemp, J. D.; Pitzer, Kenneth S. (1937). "The Entropy of Ethane and the Third Law of Thermodynamics. Hindered Rotation of Methyl Groups". Journal of the American Chemical Society. 59 (2): 276. doi:10.1021/ja01281a014.
  17. ^ Ercolani, G. (2005). "Determination of the Rotational Barrier in Ethane by Vibrational Spectroscopy and Statistical Thermodynamics". J. Chem. Educ. 82 (11): 1703–1708. Bibcode:2005JChEd..82.1703E. doi:10.1021/ed082p1703.
  18. ^ Pitzer, R.M. (1983). "The Barrier to Internal Rotation in Ethane". Acc. Chem. Res. 16 (6): 207–210. doi:10.1021/ar00090a004.
  19. ^ Mo, Y.; Wu, W.; Song, L.; Lin, M.; Zhang, Q.; Gao, J. (2004). "The Magnitude of Hyperconjugation in Ethane: A Perspective from Ab Initio Valence Bond Theory". Angew. Chem. Int. Ed. 43 (15): 1986–1990. doi:10.1002/anie.200352931. PMID 15065281.
  20. ^ Pophristic, V.; Goodman, L. (2001). "Hyperconjugation not steric repulsion leads to the staggered structure of ethane". Nature. 411 (6837): 565–8. Bibcode:2001Natur.411..565P. doi:10.1038/35079036. PMID 11385566. S2CID 205017635.
  21. ^ Schreiner, P. R. (2002). "Teaching the right reasons: Lessons from the mistaken origin of the rotational barrier in ethane". Angewandte Chemie International Edition. 41 (19): 3579–81, 3513. doi:10.1002/1521-3773(20021004)41:19<3579::AID-ANIE3579>3.0.CO;2-S. PMID 12370897.
  22. ^ Bischoff, CA (1890). "Ueber die Aufhebung der freien Drehbarkeit von einfach verbundenen Kohlenstoffatomen". Chem. Ber. 23: 623. doi:10.1002/cber.18900230197.
  23. ^ Bischoff, CA (1891). "Theoretische Ergebnisse der Studien in der Bernsteinsäuregruppe". Chem. Ber. 24: 1074–1085. doi:10.1002/cber.189102401195.
  24. ^ Bischoff, CA (1891). "Die dynamische Hypothese in ihrer Anwendung auf die Bernsteinsäuregruppe". Chem. Ber. 24: 1085–1095. doi:10.1002/cber.189102401196.
  25. ^ Bischoff, C.A.; Walden, P. (1893). "Die Anwendung der dynamischen Hypothese auf Ketonsäurederivate". Berichte der Deutschen Chemischen Gesellschaft. 26 (2): 1452. doi:10.1002/cber.18930260254.
  26. ^ "Trace gases (archived)". Atmosphere.mpg.de. Archived from the original on 2008-12-22. Retrieved 2011-12-08.
  27. ^ a b Simpson, Isobel J.; Sulbaek Andersen, Mads P.; Meinardi, Simone; Bruhwiler, Lori; Blake, Nicola J.; Helmig, Detlev; Rowland, F. Sherwood; Blake, Donald R. (2012). "Long-term decline of global atmospheric ethane concentrations and implications for methane". Nature. 488 (7412): 490–494. Bibcode:2012Natur.488..490S. doi:10.1038/nature11342. PMID 22914166. S2CID 4373714.
  28. ^ Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K. (2016). "Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift". Geophysical Research Letters. 43 (9): 4617–4623. Bibcode:2016GeoRL..43.4617K. doi:10.1002/2016GL068703. hdl:2027.42/142509.
  29. ^ "One oil field a key culprit in global ethane gas increase". University of Michigan. April 26, 2016.
  30. ^ a b Aydin, Kamil Murat; Williams, M.B.; Saltzman, E.S. (April 2007). "Feasibility of reconstructing paleoatmospheric records of selected alkanes, methyl halides, and sulfur gases from Greenland ice cores". Journal of Geophysical Research. 112 (D7). Bibcode:2007JGRD..112.7312A. doi:10.1029/2006JD008027.
  31. ^ Hodnebrog, Øivind; Dalsøren, Stig B.; Myrhe, Gunnar (2018). "Lifetimes, direct and indirect radiative forcing, and global warming potentials of ethane (C2H6), propane (C3H8), and butane (C4H10)". Atmospheric Science Letters. 19 (2). Bibcode:2018AtScL..19E.804H. doi:10.1002/asl.804.
  32. ^ Brown, Bob; et al. (2008). "NASA Confirms Liquid Lake on Saturn Moon". NASA Jet Propulsion Laboratory. Archived from the original on 2011-06-05. Retrieved 2008-07-30.
  33. ^ Brown, R. H.; Soderblom, L. A.; Soderblom, J. M.; Clark, R. N.; Jaumann, R.; Barnes, J. W.; Sotin, C.; Buratti, B.; et al. (2008). "The identification of liquid ethane in Titan's Ontario Lacus". Nature. 454 (7204): 607–10. Bibcode:2008Natur.454..607B. doi:10.1038/nature07100. PMID 18668101. S2CID 4398324.
  34. ^ Mumma, Michael J.; et al. (1996). "Detection of Abundant Ethane and Methane, Along with Carbon Monoxide and Water, in Comet C/1996 B2 Hyakutake: Evidence for Interstellar Origin". Science. 272 (5266): 1310–1314. Bibcode:1996Sci...272.1310M. doi:10.1126/science.272.5266.1310. PMID 8650540. S2CID 27362518.
  35. ^ Stern, A. (November 1, 2006). "Making Old Horizons New". The PI's Perspective. Johns Hopkins University Applied Physics Laboratory. Archived from the original on August 28, 2008. Retrieved 2007-02-12.
  36. ^ Dreher, Eberhard-Ludwig; Torkelson, Theodore R.; Beutel, Klaus K. (2011). "Chlorethanes and Chloroethylenes". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.o06_o01. ISBN 978-3-527-30385-4.
  37. ^ Najari, Sara; Saeidi, Samrand; Concepcion, Patricia; Dionysiou, Dionysios D.; Bhargava, Suresh K.; Lee, Adam F.; Wilson, Karen (2021). "Oxidative dehydrogenation of ethane: Catalytic and mechanistic aspects and future trends". Chemical Society Reviews. 50 (7): 4564–4605. doi:10.1039/D0CS01518K. PMID 33595011. S2CID 231946397.
  38. ^ Ramkumar, K.S. (26 May 2005). "SABIC's Acetic Acid Plant Comes on Stream". Arab News. Archived from the original on 9 June 2013. Retrieved 4 July 2024.
  39. ^ Cavani, Fabrizio; Ballarini, Nicola (2009). Mizuno, Noritaka (ed.). Modern Heterogeneous Oxidation Catalysis. Wiley. p. 291. ISBN 978-3-527-62755-4. Retrieved 4 July 2024.
  40. ^ Vallero, Daniel (June 7, 2010). "Cancer Slope Factors". Environmental Biotechnology: A Biosystems Approach. Academic Press. p. 641. doi:10.1016/B978-0-12-375089-1.10014-5. ISBN 9780123750891.

Read other articles:

Artikel ini bukan mengenai Cung Le. Kong LeLe pada 1960Lahir6 Maret 1934LaosMeninggal17 Januari 2014(2014-01-17) (umur 79)Paris, PrancisPengabdian Kerajaan LaosDinas/cabangAngkatan Darat Kerajaan LaosLama dinas1951 – 17 Oktober 1966PangkatKapten (kemudian memproklamasikan diri sebagai Mayor Jenderal)Komandan2ème bataillon de parachutistes (Batalion Terjun Payung 2); Forces Armées Neutralistes (Angkatan Bersenjata Netralis)Perang/pertempuranPerang Saudara Laos Pertempuran Vi...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Amstrong SembiringLahirAmstrong SembiringAlmamaterInstitut Teknologi Bandung Sekolah Tinggi Hukum Indonesia Universitas IndonesiaPekerjaanAdvokat Dosen Penulis BukuDikenal atasAktivis HukumPartai politikIndependen Ini adalah nama Karo, marganya adalah...

 

2010 single by Ellie GouldingThe WriterSingle by Ellie Gouldingfrom the album Lights Released8 August 2010Recorded2009GenreFolktronicasynth-popLength4:11LabelPolydorSongwriter(s)Ellie GouldingJonny LattimerProducer(s)StarsmithEllie Goulding singles chronology Guns and Horses (2010) The Writer (2010) Your Song (2010) The Writer is a song by English singer and songwriter Ellie Goulding from her debut album, Lights (2010). It was released as the album's fourth and final (not including the Brigh...

منتخب أنغويلا لكرة القدم للسيدات بلد الرياضة أنغويلا  الفئة كرة القدم للسيدات  رمز الفيفا AIA  مراتب تصنيف الفيفا 187 ▼ 4 (15 ديسمبر 2023)[1] مشاركات تعديل مصدري - تعديل   منتخب أنغويلا الوطني لكرة القدم للسيدات (بالإنجليزية: Anguilla women's national football team)‏ هو ممثل أنغويلا ال...

 

Opening campaign of the American Revolutionary War Boston campaignPart of the American Revolutionary WarThe Death of General Warren at the Battle of Bunker Hill by John TrumbullDateApril 19, 1775–March 17, 1776LocationProvince of Massachusetts BayResult American victory British forces evacuate from MassachusettsBelligerents United Colonies Connecticut Massachusetts Bay New Hampshire Rhode Island  Great BritainCommanders and leaders George Washington Artemas Ward Israel Putnam William P...

 

Gereja Kristus di Indonesia Gereja Kristus Di Indonesia (GKDI) Negara  Indonesia Aliran non-denominasi Website www.gkdi.org Diarsipkan 2023-07-22 di Wayback Machine. Sejarah Didirikan 1990 (sebagai Jemaat Kristus Penginjilan Nusantara), 2001 (sebagai Gereja Kristus Di Indonesia) Afiliasi International Churches of Christ www.disciplestoday.org Diarsipkan 2020-11-01 di Wayback Machine. SEA Church www.seachurchesmedia.org Diarsipkan 2023-05-28 di Wayback Machine. HOPE Worldwide www.hopeww....

Monofluorure d'iode Structure du monofluorure d'iode Identification No CAS 13873-84-2 PubChem 139637 SMILES FI PubChem, vue 3D InChI Std. InChI : vue 3D InChI=1S/FI/c1-2 Std. InChIKey : PDJAZCSYYQODQF-UHFFFAOYSA-N Propriétés chimiques Formule FI  [Isomères]IF Masse molaire[1] 145,902 87 ± 3,0E−5 g/mol F 13,02 %, I 86,98 %, Unités du SI et CNTP, sauf indication contraire. modifier  Le monofluoru...

 

Disambiguazione – Se stai cercando altri significati, vedi Quiroga (disambigua). Quirogacomune Quiroga – Veduta LocalizzazioneStato Spagna Comunità autonoma Galizia Provincia Lugo TerritorioCoordinate42°28′32.88″N 7°16′18.12″W / 42.4758°N 7.2717°W42.4758; -7.2717 (Quiroga)Coordinate: 42°28′32.88″N 7°16′18.12″W / 42.4758°N 7.2717°W42.4758; -7.2717 (Quiroga) Altitudine267 m s.l.m. Superficie317,39 km² Ab...

 

See also: 2022 United States gubernatorial elections 2022 Nevada gubernatorial election ← 2018 November 8, 2022 2026 → Turnout54.6%   Nominee Joe Lombardo Steve Sisolak Party Republican Democratic Popular vote 497,377 481,991 Percentage 48.81% 47.30% County results Congressional district resultsLombardo:      50–60%      60–70%      70–80%      80–90% Si...

2009 South Korean filmThe Relation of Face, Mind and LoveKorean nameHangul내눈에 콩깍지Revised RomanizationNae Nune KkongkkakjiMcCune–ReischauerNae Nune K‘ongkkakji Directed byLee Jang-sooWritten byShizuka OishiProduced byShin Hyun-taek Oh Nam-seok Yoo Hong-gooStarringKang Ji-hwan Lee Ji-ahCinematographyKim Seung-hoProductioncompanySamhwa NetworksDistributed byCJ EntertainmentRelease date November 5, 2009 (2009-11-05) Running time107 minutesCountriesSouth Korea JapanL...

 

Kirkby Stephen Administration Pays Royaume-Uni Nation Angleterre Comté Cumbria Indicatif 017683 Démographie Population 1 832 hab. Géographie Coordonnées 54° 28′ 18″ nord, 2° 20′ 52″ ouest Localisation Géolocalisation sur la carte : Royaume-Uni Kirkby Stephen Géolocalisation sur la carte : Royaume-Uni Kirkby Stephen Liens Site web http://www.kirkby-stephen.com/ modifier  Kirkby Stephen est un bourg de Cumbria, dans le Nord...

 

Disambiguazione – Se stai cercando altri significati, vedi Maisonneuve (disambigua). Questa voce sull'argomento centri abitati della Nuova Aquitania è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. MaisonneuvecomuneLocalizzazioneStato Francia Regione Nuova Aquitania Dipartimento Vienne ArrondissementPoitiers CantoneMigné-Auxances TerritorioCoordinate46°43′17″N 0°03′24″E / 46.721389°N 0.056667°E46.721389; 0.05...

Voce principale: Armi e armature romane. PiloPilumDiversi tipi di pilum (ill.)TipoGiavellotto OrigineCiviltà romana ImpiegoUtilizzatoriEsercito romano ConflittiGuerre romane voci di armi bianche presenti su Wikipedia Il pilum (latino, plurale: pila) era un particolare tipo di giavellotto utilizzato dall'esercito romano nei combattimenti a breve distanza. Normalmente ognuno dei soldati (pilani) ne portava due, uno leggero e uno più pesante. Fra i commentatori antichi che ne parlano maggiorm...

 

International basketball competition 2010 FIBA Europe Under-20 Championship for WomenDivision BTournament detailsHost countryRepublic of MacedoniaCityKavadarciDates16–25 July 2010Teams10 (from 1 confederation)Venue(s)1 (in 1 host city)Final positionsChampions Great Britain (1st title)Runners-up SlovakiaThird place Czech RepublicOfficial websitewww.fibaeurope.com← 2009 2011 → The 2010 FIBA Europe Under-20 Championship for Women Division B was the sixth ed...

 

Limestone formation off Marsalforn on the island of Gozo in Malta Għar QawlaTop to bottom: Before and after the collapseGeographyArchipelagoMaltese ArchipelagoArea190.34 m2 (2,048.8 sq ft)Length17.65 m (57.91 ft)Width1.72–13.44 m (5 ft 8 in – 44 ft 1 in)Highest elevation4 m (13 ft)Għar Qawqla Għar Qawqla is a limestone formation located off Marsalforn on the island of Gozo in Malta. It was formerly a natural arch co...

Joint Personnel Recovery AgencyOfficial Seal of JPRAActiveOctober 1, 1999; 24 years ago (1999-10-01)CountryUnited StatesTypeChairman's Controlled ActivityRolepersonnel recoveryHeadquartersFort Belvoir, VirginiaMotto(s)These things we do that others may live... to return with honor.Websitewww.jpra.milInsigniaAbbreviationJPRAMilitary unit The Joint Personnel Recovery Agency (JPRA) is a Chairman's Controlled Activity and is designated as DoD's office of primary responsibility f...

 

Ordre de Saint-Louis Ordo Santo Louis Dianugerahkan oleh Raja Perancis Negara Kerajaan Prancis Persyaratan penerima Tentara Katolik Dianugerahkan atas dasar Keberanian militer Status Dihapuskan oleh Revolusi Juli pada tahun 1830 Moto Bellicae virtutis praemium Hadiah keberanian militer Statistik Ditetapkan pada 5 April 1693 Pita ordo Ordre royal et militaire de Saint-Louis (Ordo kerajaan dan militer Santo Louis) adalah sebuah ordo kehormatan Prancis yang dibuat pada 5 April 1693 oleh Louis X...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) دوري هونغ كونغ لكرة القدم 1999–2000 تفاصيل الموسم دوري هونغ كونغ الدرجة الأولى  [لغات أخرى]‏  النس�...

Kejuaraan DuniaFormula Satu FIA 1987 Juara Dunia Pembalap: Nelson Piquet Juara Dunia Konstruktor: Williams-Honda Pemenang Trofi Jim Clark: Jonathan Palmer Pemenang Trofi Colin Chapman: Tyrell-Ford Sebelum: 1986 Sesudah: 1988 Balapan menurut negaraBalapan menurut musim Nelson Piquet (foto pada tahun 1983) berhasil memenangkan gelar Kejuaraan Dunia Pembalap untuk yang ketiga dan terakhir kalinya, membalap untuk tim Williams. Rekan setim Piquet, yaitu Nigel Mansell (foto tahun 1991), menjadi ru...

 

Women's 400 metre freestyleat the Games of the XXXIII OlympiadVenueOlympic Aquatics Centre,Paris La Défense ArenaDates27 July 2024(Heats and Final)Competitors21 from 15 nationsWinning time3:57.49Medalists Ariarne Titmus  Australia Summer McIntosh  Canada Katie Ledecky  United States← 20202028 → Swimming at the2024 Summer OlympicsQualificationFreestyle50 mmenwomen100 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomenBackstroke100 mme...