Ability to easily ignite in air at ambient temperatures
A combustible material is a material that can burn (i.e., sustain a flame) in air under certain conditions. A material is flammable if it ignites easily at ambient temperatures. In other words, a combustible material ignites with some effort and a flammable material catches fire immediately on exposure to flame.
The degree of flammability in air depends largely upon the volatility of the material - this is related to its composition-specific vapour pressure, which is temperature dependent. The quantity of vapour produced can be enhanced by increasing the surface area of the material forming a mist or dust. Take wood as an example. Finely divided wood dust can undergo explosive flames and produce a blast wave. A piece of paper (made from wood) catches on fire quite easily. A heavy oak desk is much harder to ignite, even though the wood fibre is the same in all three materials.
Common sense (and indeed scientific consensus until the mid-1700s) would seem to suggest that material "disappears" when burned, as only the ash is left. Further scientific research has found that conservation of mass holds for chemical reactions. Antoine Lavoisier, one of the pioneers in these early insights, stated: "Nothing is lost, nothing is created, everything is transformed." The burning of a solid material may appear to lose weight if the mass of combustion gases (such as carbon dioxide and water vapor) are not taken into account. The original mass of flammable material and the mass of the oxygen consumed (typically from the surrounding air) equals the mass of the flame products (ash, water, carbon dioxide, and other gases). Lavoisier used the experimental fact that some metals gained mass when they burned to support his ideas (because those chemical reactions capture oxygen atoms into solid compounds rather than gaseous water).
Definitions
Historically, flammable, inflammable and combustible meant capable of burning.[1] The word "inflammable" came through French from the Latin inflammāre = "to set fire to", where the Latin preposition "in-"[2] means "in" as in "indoctrinate", rather than "not" as in "invisible" and "ineligible".
The word "inflammable" may be erroneously thought to mean "non-flammable".[3] The erroneous usage of the word "inflammable" is a significant safety hazard. Therefore, since the 1950s, efforts to put forward the use of "flammable" in place of "inflammable" were accepted by linguists, and it is now the accepted standard in American English and British English.[4][5] Antonyms of "flammable" or "inflammable" include: non-flammable, non-inflammable, incombustible, non-combustible, not flammable, and fireproof.
Flammable applies to combustible materials that ignite easily and thus are more dangerous and more highly regulated. Less easily ignited less-vigorously burning materials are combustible. For example, in the United States flammable liquids, by definition, have a flash point below 100 °F (38 °C)—where combustible liquids have a flash point above 100 °F (38 °C). Flammable solids are solids that are readily combustible, or may cause or contribute to fire through friction. Readily combustible solids are powdered, granular, or pasty substances that easily ignite by brief contact with an ignition source, such as a burning match, and spread flame rapidly.[6] The technical definitions vary between countries so the United Nations created the Globally Harmonized System of Classification and Labeling of Chemicals, which defines the flash point temperature of flammable liquids as between 0 and 140 °F (60 °C) and combustible liquids between 140 °F (60 °C) and 200 °F (93 °C).[6]
Flammability
Flammability is the ease with which a combustible substance can be ignited, causing fire or combustion or even an explosion. The degree of difficulty required to cause the combustion of a substance is quantified through fire testing. Internationally, a variety of test protocols exist to quantify flammability. The ratings achieved are used in building codes, insurance requirements, fire codes and other regulations governing the use of building materials as well as the storage and handling of highly flammable substances inside and outside of structures and in surface and air transportation. For instance, changing an occupancy by altering the flammability of the contents requires the owner of a building to apply for a building permit to make sure that the overall fire protection design basis of the facility can take the change into account.
Classification of flammability
Globally Harmonized System of Classification and Labelling of Chemicals uses a four category system to classify flammable liquids using flash point and boiling point temperature.[7][8] This system is used internationally to evaluate and sort substances in industrial applications, workplaces and products distributed to consumers.
Prior to 2012, OSHA's classification of flammable and combustible liquids in regulation 1910.106, was nearly identical to the National Fire Protective Association (NFPA) Flammable and Combustible Liquids Code, NFPA 30.[a][9] While no longer used for occupational regulations, NFPA 30's definitions are still commonly used in fire codes and NFPA codes and standards.
Other systems for classifications of flammable liquids exist for more specialist applications, such as NFPA 704, which uses five categories, intended for emergency workers to understand the hazard posed by a substance during an emergency, such as a spill.[10] In addition to GHS, flammability classifications are incorporated into various systems designed for communicating physical and health hazards in workplaces; such as American Coatings Association's Hazardous Materials Identification System (HMIS) and Lab Safety Supply's Hazardous Material Identification Guide (HMIG).[11]
Examples of flammable substances
Flammable substances include, but are not limited to:
Gasoline - Petrol / a complicated mixture of hydrocarbons that includes isomers of octane, C8H18
Flammability of furniture is of concern as cigarettes and candle accidents can trigger domestic fires. In 1975, California began implementing Technical Bulletin 117 (TB 117), which required that materials such as polyurethane foam used to fill furniture be able to withstand a small open flame, equivalent to a candle, for at least 12 seconds.[12] In polyurethane foam, furniture manufacturers typically meet TB 117 with additive halogenated organic flame retardants. No other U.S. states had similar standards, but because California has such a large market, manufacturers meet TB 117 in products that they distribute across the United States. The proliferation of flame retardants, and especially halogenated organic flame retardants, in furniture across the United States is strongly linked to TB 117. When it became apparent that the risk-benefit ratio of this approach was unfavorable and industry had used falsified documentation (i.e. see David Heimbach) for the use of flame retardants, California modified TB 117 to require that fabric covering upholstered furniture meet a smolder test replacing the open flame test.[13] Gov. Jerry Brown signed the modified TB117-2013, which became effective in 2014.[14]
Fabric flammability
Lightweight textiles with porous surfaces are the most flammable fabrics.[15] Wool is less flammable than cotton, linen, silk, or viscose (rayon).[15][16] Polyester and nylon resist ignition, and melt rather than catch fire.[15][16]Acrylic is the most flammable synthetic fiber.[15]
Testing
A fire test can be conducted to determine the degree of flammability. Test standards used to make this determination but are not limited to the following:
Combustibility is a measure of how easily a substance bursts into flame, through fire or combustion. This is an important property to consider when a substance is used for construction or is being stored. It is also important in processes that produce combustible substances as a by-product. Special precautions are usually required for substances that are easily combustible. These measures may include installation of fire sprinklers or storage remote from possible sources of ignition.
Substances with low combustibility may be selected for construction where the fire risk must be reduced, such as apartment buildings, houses, or offices. If combustible resources are used there is greater chance of fire accidents and deaths. Fire resistant substances are preferred for building materials and furnishings.
Non-combustible material
A non-combustible material[17] is a substance that does not ignite, burn, support combustion, or release flammable vapors when subject to fire or heat, in the form in which it is used and under conditions anticipated. Any solid substance complying with either of two sets of passing criteria listed in Section 8 of ASTM E 136 when the substance is tested in accordance with the procedure specified in ASTM E 136 is considered to be non-combustible.[18]
A number of industrial processes produce combustible dust as a by-product. The most common being wood dust. Combustible dust has been defined as: a solid material composed of distinct particles or pieces, regardless of size, shape, or chemical composition, which presents a fire or deflagration hazard when suspended in air or some other oxidizing medium over a range of concentrations.[19] In addition to wood, combustible dusts include metals, especially magnesium, titanium and aluminum, as well as other carbon-based dusts.[19] There are at least 140 known substances that produce combustible dust.[20]: 38 [21] While the particles in a combustible dusts may be of any size, normally they have a diameter of less than 420 μm.[19][b] As of 2012[update], the United States Occupational Safety and Health Administration has yet to adopt a comprehensive set of rules on combustible dust.[22]
When suspended in air (or any oxidizing environment), the fine particles of combustible dust present a potential for explosions. Accumulated dust, even when not suspended in air, remains a fire hazard. The National Fire Protection Association (U.S.) specifically addresses the prevention of fires and dust explosions in agricultural and food products facilities in NFPA Code section 61,[23] and other industries in NFPA Code sections 651–664.[c]Collectors designed to reduce airborne dust account for more than 40 percent of all dust explosions.[24] Other important processes are grinding and pulverizing, transporting powders, filing silos and containers (which produces powder), and the mixing and blending of powders.[25]
Investigation of 200 dust explosions and fires, between 1980 and 2005, indicated approximately 100 fatalities and 600 injuries.[20]: 105–106 In January 2003, a polyethylene powder explosion and fire at the West Pharmaceutical Services plant in Kinston, North Carolina resulted in the deaths of six workers and injuries to 38 others.[20]: 104 In February 2008 an explosion of sugar dust rocked the Imperial Sugar Company's plant at Port Wentworth, Georgia,[26] resulting in thirteen deaths.[27]
Important characteristics
Flash point
A material's flash point is a metric of how easy it is to ignite the vapor of the material as it evaporates into the atmosphere. It is defined as the lowest material temperature required for fuel oils in the materials to begin to give off flammable vapors in the quantity high enough to support a flash of fire when ignited by an external source.[28] A lower flash point indicates higher flammability. Materials with flash points below 100 °F (38 °C) are regulated in the United States by OSHA as potential workplace hazards.
The flame point of a material is a temperature value at which sustained flame can be supported on the material once ignited by an external source.[28] Once the flame point of a material is reached, it produces enough fuel vapors or oils to support continuous burning.
Flammability or explosive range
The lower flammability limit or lower explosive limit (LFL/LEL) represents the lowest air to fuel vapor concentration required for combustion to take place when ignited by an external source, for any particular chemical.[29] Any concentration lower than this could not produce a flame or result in combustion. The upper flammability limit or upper explosive limit (UFL/UEL) represents the highest air to fuel vapor concentration at which combustion can take place when ignited by an external source.[29] Any fuel-air mixture higher than this would be too concentrated to result in combustion. The values existing between these two limits represent the flammable or explosive range. Within this threshold, give an external ignition source, combustion of the particular fuel would likely happen.
Vapor pressure
The vapor pressure of a liquid, which varies with its temperature, is a measure of how much the vapor of the liquid tends to concentrate in the surrounding atmosphere as the liquid evaporates.[30] Vapor pressure is a major determinant of the flash point and flame point, with higher vapor pressures leading to lower flash points and higher flammability ratings.
The International Code Council (ICC) developed fire code requirements to provide adequate protection to the building and occupants.[31] These codes specify the combustibility rating for materials, the entrance and exit requirements, as well as active fire protection requirements, along with numerous other things. In the U.S. other agencies have also developed building codes that specify combustibility ratings such as state and/or county governing bodies. Following the requirements of these fire codes are crucial for higher occupancy buildings.
For existing buildings, fire codes focus on maintaining the occupancies as originally intended. In other words, if a portion of a building were designed as an apartment, one could not suddenly load it with flammable liquids and turn it into a gas storage facility, because the fire load and smoke development in that one apartment would be so immense as to overtax the active fire protection as well as the passive fire protection means for the building. The handling and use of flammable substances inside a building is subject to the local fire code, which is ordinarily enforced by the local fire prevention officer.
BS 476-4:1970 defines a test for combustibility in which a technician heats three specimens of a material in a furnace. Combustibile materials are those for which any of the three specimens either:
Makes the temperature reading from either of two thermocouples rise by 50 degrees Celsius or more above the initial furnace temperature
Flame continuously for 10 seconds or more inside the furnace
Otherwise, the material is classified as non-combustible.
Various countries have tests for determining non-combustibility of materials. Most involve the heating of a specified quantity of the test specimen for a set duration. Usually, the material must not support combustion and must not lose more than a certain amount of mass. As a general rule of thumb, concrete, steel, and ceramics - in other words inorganic substances - pass these tests, so building codes list them as suitable and sometimes even mandate their use in certain applications. In Canada, for instance, firewalls must be made of concrete.
DIN 4102 B3: Polyurethane foam (easy to ignite = many hydrocarbon bonds usually)
Materials can be tested for the degree of flammability and combustibility in accordance with the German DIN 4102. DIN 4102, as well as its British cousin BS 476 include for testing of passive fire protectionsystems, as well as some of its constituent materials.
The following are the categories in order of degree of combustibility and flammability:
A more recent industrial standard is the European EN 13501-1 - Fire classification of construction products and building elements—which roughly replaces A2 with A2/B, B1 with C, B2 with D/E and B3 with F.
B3 or F rated materials may not be used in building unless combined with another material that reduces the flammability of those materials.
^OSHA regulations excluded liquids with a flashpoint above 200 °F (93 °C), (Class III-B), specifically noting that any reference to "Class III liquids" was to be understood as only describing Class III-A liquids.
^I.e. they can pass through a U.S. No. 40 standard sieve.
^National Materials Advisory Board, Panel on Classification of Combustible Dusts of the Committee on Evaluation of Industrial Hazards (1980) Classification of combustible dusts in accordance with the national electrical code Publication NMAB 353-3, National Research Council (U.S.), Washington, D.C., OCLC8391202
^The chief executive, John C. Sheptor, said the probable cause of the explosion was sugar dust building up in storage areas, which could have been ignited by static electricity or a spark. Dewan, Shaila (9 February 2008). "Lives and a Georgia Community's Anchor Are Lost". The New York Times. Retrieved 7 May 2012.
^ abManha, William D. (2009-01-01), Musgrave, Gary Eugene; Larsen, Axel (Skip) M.; Sgobba, Tommaso (eds.), "Chapter 20 - Propellant Systems Safety", Safety Design for Space Systems, Burlington: Butterworth-Heinemann, pp. 661–694, ISBN978-0-7506-8580-1, retrieved 2023-04-10
BraNama lengkapAssociazione Sportiva Dilettantistica BraBerdiri1913StadionStadio Madonna dei Fiori,Bra, Italy(Kapasitas: 700)KetuaGiacomo GermanettiManajerFabrizio DaidolaLigaSerie D/A2011–12Eccellenza Piedmont and Aosta Valley/B, 1stSitus webSitus web resmi klub Kostum kandang Kostum tandang Associazione Sportiva Dilettantistica Bra adalah sebuah tim sepak bola Italia yang berada di kota Bra, Piemonte. Bra saat ini bermain di Serie D. Sejarah Pendirian Klub ini didirikan pada tahun 19...
Review of the election For related races, see 1932 United States gubernatorial elections. 1932 Arizona gubernatorial election ← 1930 November 8, 1932 1934 → Nominee Benjamin Baker Moeur Jack Kinney Party Democratic Republican Popular vote 75,314 42,202 Percentage 63.22% 35.43% County resultsMoeur: 50–60% 60–70% 70–80%Kinney: 50–60% G...
Koordinat: 31°17′9″N 45°51′13″E / 31.28583°N 45.85361°E / 31.28583; 45.85361 Mesopotamia di masa Hammurabi Penyembah Larsa, patung nazar yang didedikasikan kepada dewa Amurru untuk hidup Hammurabi, awal milenium ke-2 SM, Museum Louvre Larsa (Logogram Bahasa Sumeria: UD.UNUGKI,[1] dibaca Larsamki[2]) merupakan sebuah kota penting Sumeria kuno, pusat kultus Dewa matahari Utu. Kota ini terletak sekitar 25 km tenggara Uruk di Irak Kegubernu...
لدائنمنتجات وأغراض مصنوعة من اللدائنمعلومات عامةصنف فرعي من مادة المواد المستخدمة وقود أحفوريمبلمر تعديل - تعديل مصدري - تعديل ويكي بيانات أنموذج لجزيء البوليبروبيلين - الكرات الزرقاء تمثل ذرات الكربون، والرمادية الهيدروجين اللدائن * هي مجموعة واسعة من المواد الاصطناعية...
Cuisine of Andalusia, Spain Andalusian cuisine is the regional cuisine of Andalusia, Spain. Notable dishes include gazpacho, fried fish (often called pescaíto frito[1] in the local vernacular), the jamones of Jabugo, Valle de los Pedroches and Trevélez, and the wines of Jerez, particularly sherry. Culinary influences come from the historic Christian, Muslim, and Jewish traditions of the region.[2] The oldest known cookbook of Andalusian cuisine dates from the 14th century....
Lancia MontecarloDescrizione generaleCostruttore Lancia Tipo principaleBerlinetta Altre versioniTarga Produzionedal 1975 al 1981 Sostituisce laLancia Stratos Sostituita daLancia Rally 037 Esemplari prodotti7798[1] Altre caratteristicheDimensioni e massaLunghezza3813 mm Larghezza1696 mm Altezza1190 mm Passo2300 mm Massa970–1040 kg AltroAssemblaggioStabilimento Pininfarina di Grugliasco StilePaolo Martin per Pininfarina Stessa famigliaLancia Medusa, ...
Surgical technique for cysts and abscesses Marsupialization Marsupialization is the surgical technique of cutting a slit into an abscess or cyst and suturing the edges of the slit to form a continuous surface from the exterior surface to the interior surface of the cyst or abscess. Sutured in this fashion, the site remains open and can drain freely. This technique is used to treat a cyst or abscess when a single draining would not be effective and complete removal of the surrounding structure...
For the pre-Beeching railway along the same route that closed in 1969, see Waverley Route. Railway from Edinburgh to Tweedbank Borders RailwayClass 158 at Galashiels, August 2015OverviewOwnerNetwork RailLocaleEdinburghMidlothianScottish BordersTerminiEdinburgh WaverleyTweedbankStations9Websitebordersrailway.co.ukServiceTypeHeavy railSystemNational RailOperator(s)ScotRailDepot(s)Tweedbank, Edinburgh CraigentinnyRolling stockClass 158Class 170Ridership2,016,186 (2019)[1]HistoryOpened6...
French soldier and diplomat (1768–1828) Jacques Alexandre Bernard Law de LauristonPortrait by Marie-Éléonore GodefroidBorn(1768-02-01)1 February 1768Pondicherry, French IndiaDied12 June 1828(1828-06-12) (aged 60)Paris, FranceAllegiance Kingdom of France Kingdom of the French French First Republic First French Empire Bourbon RestorationService/branchArtillery, staffYears of service1786-1828RankMarshal of FranceBattles/warsFrench Revolutionary WarsNapoleonic Wa...
Swedish fermented Baltic Sea herring SurströmmingOpened can of surströmming in brineAlternative namesFermented herringTypeFermented fishPlace of originSwedenRegion or stateNorrlandInvented16th century or earlierServing temperatureColdMain ingredientsBaltic herringWaterSaltOther informationAnnual premiere the third Thursday in August. Media: Surströmming Surströmming (pronounced [ˈsʉ̂ːˌʂʈrœmːɪŋ]; Swedish for 'sour herring') is lightly salted, fermented ...
Aspect of Italian and Jewish history Part of a series onJews and Judaism Etymology Who is a Jew? Religion God in Judaism (names) Principles of faith Mitzvot (613) Halakha Shabbat Holidays Prayer Tzedakah Land of Israel Brit Bar and bat mitzvah Marriage Bereavement Baal teshuva Philosophy Ethics Kabbalah Customs Rites Synagogue Rabbi Texts Tanakh Torah Nevi'im Ketuvim Talmud Mishnah Gemara Rabbinic Midrash Tosefta Targum Beit Yosef Mishneh Torah Tur Shulchan Aruch Zohar His...
Camport Bay at Dooega on Achill Island Looking towards the cliffs of Dooega Head from the coast road near Keem Dumha Éige (anglicised: Dooega[1]) is a village in the south west of Achill Island on the west coast of Ireland in County Mayo. It is in the Gaeltacht and is the home of Coláiste Acla. It once had a National School. The scenic area is part of the Achill Atlantic Drive. Dumha Éige/Dooega has a Blue Flag beach, a church, a pub and guesthouse. 53°55′20″N 10°01′30″W...
Questa voce sull'argomento centri abitati del Paraná è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Nova Esperançacomune LocalizzazioneStato Brasile Stato federato Paraná MesoregioneNorte Central Paranaense MicroregioneAstorga AmministrazioneSindacoGerson Zanusso (PSD) dal 2013 TerritorioCoordinate23°10′57″S 52°12′18″W23°10′57″S, 52°12′18″W (Nova Esperança) Altitudine550 m s.l.m. Superficie401...
Remote New Zealand archipelago This article is about islands of New Zealand. For islands elsewhere, see Chatham Island (disambiguation). Chatham IslandsNative name: Rēkohu (Moriori)Wharekauri (Māori)Nickname: The ChathamsThe two largest islands: Chatham (Rēkohu) and Pitt Island (Rangiaotea), to the southeastLocation of the Chatham IslandsGeographyLocationSouthern Pacific OceanCoordinates44°00′S 176°30′W / 44.00°S 176.50°W / -44.00; -176.50Total islands10Majo...
Byzantine emperor from 886 to 912 Leo VIEmperor of the RomansA mosaic in Hagia Sophia showing Leo VI paying homage to ChristByzantine emperorReign29 August 886 – 11 May 912Coronation6 January 870[1]PredecessorBasil ISuccessorAlexanderCo-emperorsBasil I (870–886)Constantine (870–879)Alexander (879–912)Constantine VII (908–912)Born19 September 866ConstantinopleDied11 May 912(912-05-11) (aged 45)ConstantinopleBurialChurch of the Holy Apostles, ConstantinopleWivesTheophano ...
Diplomatic missions sent to the Chinese courtPossible routes of embassy vessels to the Tang dynasty The Japanese missions to Imperial China were diplomatic embassies which were intermittently sent to the Chinese imperial court. Any distinction amongst diplomatic envoys sent from the Japanese court or from any of the Japanese shogunates was lost or rendered moot when the ambassador was received in the Chinese capital. Extant records document missions to China between the years of 607 and 839 (...
Ukrainian ice dancer Alexander ShakalovShakalov at the 2004 NHK TrophyBorn (1982-03-26) 26 March 1982 (age 42)DnipropetrovskHeight1.74 m (5 ft 8+1⁄2 in)Figure skating careerCountryUkraineBegan skating1986Retired2011 Alexander Shakalov (Ukrainian: Олександр Васильович Шакалов; born 26 March 1982 in Dnipropetrovsk, Ukrainian SSR) is a Ukrainian ice dancer. Career In his early career, Shakalov competed with Viktoria Polzykina and Julia Grigoren...
Herder ist eine Weiterleitung auf diesen Artikel. Weitere Bedeutungen sind unter Herder (Begriffsklärung) aufgeführt. Johann Gottfried Herder, Gemälde von Anton Graff, 1785, Gleimhaus Halberstadt.Herders Unterschrift: Johann Gottfried Herder Johann Gottfried Herder, ab 1802 von Herder (Rufname Gottfried,[1] * 25. August 1744 in Mohrungen, Ostpreußen; † 18. Dezember 1803 in Weimar), war ein deutscher Dichter, Übersetzer, Theologe sowie Geschichts- und Kultur-Philosoph der Weima...
Live album by Led ZeppelinLive on Blueberry HillLive album by Led ZeppelinRecordedSeptember 4, 1970VenueLos Angeles Forum, Inglewood, CaliforniaLength106:53LabelTrademark of Quality Professional ratingsReview scoresSourceRatingAllMusic[1] Live on Blueberry Hill (also known as Blueberry Hill) is a bootleg recording of English rock group Led Zeppelin's performance at the Los Angeles Forum on September 4, 1970, which took place during their summer 1970 North American Tour.[2...