Friction loss

Jean Le Rond d'Alembert, Nouvelles expériences sur la résistance des fluides, 1777

In fluid dynamics, friction loss (or frictional loss) is the head loss that occurs in a containment such as a pipe or duct due to the effect of the fluid's viscosity near the surface of the containment.[1]

Engineering

Friction loss is a significant engineering concern wherever fluids are made to flow, whether entirely enclosed in a pipe or duct, or with a surface open to the air.

  • Historically, it is a concern in aqueducts of all kinds, throughout human history. It is also relevant to sewer lines. Systematic study traces back to Henry Darcy, an aqueduct engineer.
  • Natural flows in river beds are important to human activity; friction loss in a stream bed has an effect on the height of the flow, particularly significant during flooding.
  • The economies of pipelines for petrochemical delivery are highly affected by friction loss. The Yamal–Europe pipeline carries methane at a volume flow rate of 32.3 × 109 m3 of gas per year, at Reynolds numbers greater than 50 × 106.[2]
  • In hydropower applications, the energy lost to skin friction in flume and penstock is not available for useful work, say generating electricity.
  • In refrigeration applications, energy is expended pumping the coolant fluid through pipes or through the condenser. In split systems, the pipes carrying the coolant take the place of the air ducts in HVAC systems.

Calculating volumetric flow

In the following discussion, we define volumetric flow rate V̇ (i.e. volume of fluid flowing per time) as

where

r = radius of the pipe (for a pipe of circular section, the internal radius of the pipe).
v = mean velocity of fluid flowing through the pipe.
A = cross sectional area of the pipe.

In long pipes, the loss in pressure (assuming the pipe is level) is proportional to the length of pipe involved. Friction loss is then the change in pressure Δp per unit length of pipe L

When the pressure is expressed in terms of the equivalent height of a column of that fluid, as is common with water, the friction loss is expressed as S, the "head loss" per length of pipe, a dimensionless quantity also known as the hydraulic slope.

where

ρ = density of the fluid, (SI kg / m3)
g = the local acceleration due to gravity;

Characterizing friction loss

Friction loss, which is due to the shear stress between the pipe surface and the fluid flowing within, depends on the conditions of flow and the physical properties of the system. These conditions can be encapsulated into a dimensionless number Re, known as the Reynolds number

where V is the mean fluid velocity and D the diameter of the (cylindrical) pipe. In this expression, the properties of the fluid itself are reduced to the kinematic viscosity ν

where

μ = viscosity of the fluid (SI kg / m • s)

Friction loss in straight pipe

The friction loss in uniform, straight sections of pipe, known as "major loss", is caused by the effects of viscosity, the movement of fluid molecules against each other or against the (possibly rough) wall of the pipe. Here, it is greatly affected by whether the flow is laminar (Re < 2000) or turbulent (Re > 4000):[1]

  • In laminar flow, losses are proportional to fluid velocity, V; that velocity varies smoothly between the bulk of the fluid and the pipe surface, where it is zero. The roughness of the pipe surface influences neither the fluid flow nor the friction loss.
  • In turbulent flow, losses are proportional to the square of the fluid velocity, V2; here, a layer of chaotic eddies and vortices near the pipe surface, called the viscous sub-layer, forms the transition to the bulk flow. In this domain, the effects of the roughness of the pipe surface must be considered. It is useful to characterize that roughness as the ratio of the roughness height ε to the pipe diameter D, the "relative roughness". Three sub-domains pertain to turbulent flow:
    • In the smooth pipe domain, friction loss is relatively insensitive to roughness.
    • In the rough pipe domain, friction loss is dominated by the relative roughness and is insensitive to Reynolds number.
    • In the transition domain, friction loss is sensitive to both.
  • For Reynolds numbers 2000 < Re < 4000, the flow is unstable, varying with time as vortices within the flow form and vanish randomly. This domain of flow is not well modeled, nor are the details well understood.

Form friction

Factors other than straight pipe flow induce friction loss; these are known as "minor loss":

  • Fittings, such as bends, couplings, valves, or transitions in hose or pipe diameter, or
  • Objects intruded into the fluid flow.

For the purposes of calculating the total friction loss of a system, the sources of form friction are sometimes reduced to an equivalent length of pipe.

Surface roughness

The roughness of the surface of the pipe or duct affects the fluid flow in the regime of turbulent flow. Usually denoted by ε, values used for calculations of water flow, for some representative materials are:[3][4][5]

Surface Roughness ε (for water pipes)
Material mm in
Corrugated plastic pipes (apparent roughness) 3.5 0.14[6]
Mature foul sewers 3.0 0.12[6]
Steel water mains with general tuberculations 1.2 0.047[6]
Riveted Steel 0.9–9.0 0.035–0.35
Concrete (heavy brush asphalts or eroded by sharp material),
Brick
0.5 0.02[6][7]
Concrete 0.3–3.0 0.012–0.12
Wood Stave 0.2–0.9 5–23
Galvanized metals (normal finish),
Cast iron (coated and uncoated)
0.15–0.26 0.006–0.010[6]
Asphalted Cast Iron 0.12 0.0048
Concrete (new, or fairly new, smooth) 0.1 0.004[6]
Steel Pipes, Galvanized metals (smooth finish),
Concrete (new, unusually smooth, with smooth joints),
Asbestos cement,
Flexible straight rubber pipe (with smooth bore)
0.025–0.045 0.001–0.0018[6]
Commercial or Welded Steel, Wrought Iron 0.045 0.0018
PVC, Brass, Copper, Glass, other drawn tubing 0.0015–0.0025 0.00006–0.0001[6][7]

Values used in calculating friction loss in ducts (for, e.g., air) are:[8]

Surface Roughness ε (for air ducts)
Material mm in
Flexible Duct (wires exposed) 3.00 0.120
Flexible Duct (wires covered) 0.90 0.036
Galvanized Steel 0.15 0.006
PVC, Stainless Steel, Aluminum, Black Iron 0.05 0.0018

Calculating friction loss

Hagen–Poiseuille Equation

Laminar flow is encountered in practice with very viscous fluids, such as motor oil, flowing through small-diameter tubes, at low velocity. Friction loss under conditions of laminar flow follow the Hagen–Poiseuille equation, which is an exact solution to the Navier-Stokes equations. For a circular pipe with a fluid of density ρ and viscosity μ, the hydraulic slope S can be expressed

In laminar flow (that is, with Re < ~2000), the hydraulic slope is proportional to the flow velocity.

Darcy–Weisbach Equation

In many practical engineering applications, the fluid flow is more rapid, therefore turbulent rather than laminar. Under turbulent flow, the friction loss is found to be roughly proportional to the square of the flow velocity and inversely proportional to the pipe diameter, that is, the friction loss follows the phenomenological Darcy–Weisbach equation in which the hydraulic slope S can be expressed[9]

where we have introduced the Darcy friction factor fD (but see Confusion with the Fanning friction factor);

fD = Darcy friction factor

Note that the value of this dimensionless factor depends on the pipe diameter D and the roughness of the pipe surface ε. Furthermore, it varies as well with the flow velocity V and on the physical properties of the fluid (usually cast together into the Reynolds number Re). Thus, the friction loss is not precisely proportional to the flow velocity squared, nor to the inverse of the pipe diameter: the friction factor takes account of the remaining dependency on these parameters.

From experimental measurements, the general features of the variation of fD are, for fixed relative roughness ε / D and for Reynolds number Re = V D / ν > ~2000,[a]

  • With relative roughness ε / D < 10−6, fD declines in value with increasing Re in an approximate power law, with one order of magnitude change in fD over four orders of magnitude in Re. This is called the "smooth pipe" regime, where the flow is turbulent but not sensitive to the roughness features of the pipe (because the vortices are much larger than those features).
  • At higher roughness, with increasing Reynolds number Re, fD climbs from its smooth pipe value, approaching an asymptote that itself varies logarithmically with the relative roughness ε / D; this regime is called "rough pipe" flow.
  • The point of departure from smooth flow occurs at a Reynolds number roughly inversely proportional to the value of the relative roughness: the higher the relative roughness, the lower the Re of departure. The range of Re and ε / D between smooth pipe flow and rough pipe flow is labeled "transitional". In this region, the measurements of Nikuradse show a decline in the value of fD with Re, before approaching its asymptotic value from below,[10] although Moody chose not to follow those data in his chart,[11] which is based on the Colebrook–White equation.
  • At values of 2000 < Re < 4000, there is a critical zone of flow, a transition from laminar to turbulence, where the value of fD increases from its laminar value of 64 / Re to its smooth pipe value. In this regime, the fluid flow is found to be unstable, with vortices appearing and disappearing within the flow over time.
  • The entire dependence of fD on the pipe diameter D is subsumed into the Reynolds number Re and the relative roughness ε / D, likewise the entire dependence on fluid properties density ρ and viscosity μ is subsumed into the Reynolds number Re. This is called scaling.[b]

The experimentally measured values of fD are fit to reasonable accuracy by the (recursive) Colebrook–White equation,[12] depicted graphically in the Moody chart which plots friction factor fD versus Reynolds number Re for selected values of relative roughness ε / D.

Calculating friction loss for water in a pipe

Water friction loss ("hydraulic slope") S versus flow Q for given ANSI Sch. 40 NPT PVC pipe, roughness height ε = 1.5 μm

In a design problem, one may select pipe for a particular hydraulic slope S based on the candidate pipe's diameter D and its roughness ε. With these quantities as inputs, the friction factor fD can be expressed in closed form in the Colebrook–White equation or other fitting function, and the flow volume Q and flow velocity V can be calculated therefrom.

In the case of water (ρ = 1 g/cc, μ = 1 g/m/s[13]) flowing through a 12-inch (300 mm) Schedule-40 PVC pipe (ε = 0.0015 mm, D = 11.938 in.), a hydraulic slope S = 0.01 (1%) is reached at a flow rate Q = 157 lps (liters per second), or at a velocity V = 2.17 m/s (meters per second). The following table gives Reynolds number Re, Darcy friction factor fD, flow rate Q, and velocity V such that hydraulic slope S = hf / L = 0.01, for a variety of nominal pipe (NPS) sizes.

Volumetric Flow Q where Hydraulic Slope S is 0.01, for selected Nominal Pipe Sizes (NPS) in PVC[14][15]
NPS D S Re fD Q V
in mm in[16] gpm lps ft/s m/s
1/2 15 0.622 0.01 4467 5.08 0.9 0.055 0.928 0.283
3/4 20 0.824 0.01 7301 5.45 2 0.120 1.144 0.349
1 25 1.049 0.01 11090 5.76 3.8 0.232 1.366 0.416
⁠1+1/2 40 1.610 0.01 23121 6.32 12 0.743 1.855 0.565
2 50 2.067 0.01 35360 6.64 24 1.458 2.210 0.674
3 75 3.068 0.01 68868 7.15 70 4.215 2.899 0.884
4 100 4.026 0.01 108615 7.50 144 8.723 3.485 1.062
6 150 6.065 0.01 215001 8.03 430 26.013 4.579 1.396
8 200 7.981 0.01 338862 8.39 892 53.951 5.484 1.672
10 250 10.020 0.01 493357 8.68 1631 98.617 6.360 1.938
12 300 11.938 0.01 658254 8.90 2592 156.765 7.122 2.171

Note that the cited sources recommend that flow velocity be kept below 5 feet / second (~1.5 m/s).

Also note that the given fD in this table is actually a quantity adopted by the NFPA and the industry, known as C, which has the customary units psi/(100 gpm2ft) and can be calculated using the following relation:

where is the pressure in psi, is the flow in 100gpm and is the length of the pipe in 100ft

Calculating friction loss for air in a duct

A graphical depiction of the relationship between Δp / L, the pressure loss per unit length of pipe, versus flow volume Q, for a range of choices for pipe diameter D, for air at standard temperature and pressure. Units are SI. Lines of constant RefD are also shown.[17]

Friction loss takes place as a gas, say air, flows through duct work.[17] The difference in the character of the flow from the case of water in a pipe stems from the differing Reynolds number Re and the roughness of the duct.

The friction loss is customarily given as pressure loss for a given duct length, Δp / L, in units of (US) inches of water for 100 feet or (SI) kg / m2 / s2.

For specific choices of duct material, and assuming air at standard temperature and pressure (STP), standard charts can be used to calculate the expected friction loss.[8][18] The chart exhibited in this section can be used to graphically determine the required diameter of duct to be installed in an application where the volume of flow is determined and where the goal is to keep the pressure loss per unit length of duct S below some target value in all portions of the system under study. First, select the desired pressure loss Δp / L, say 1 kg / m2 / s2 (0.12 in H2O per 100 ft) on the vertical axis (ordinate). Next scan horizontally to the needed flow volume Q, say 1 m3 / s (2000 cfm): the choice of duct with diameter D = 0.5 m (20 in.) will result in a pressure loss rate Δp / L less than the target value. Note in passing that selecting a duct with diameter D = 0.6 m (24 in.) will result in a loss Δp / L of 0.02 kg / m2 / s2 (0.02 in H2O per 100 ft), illustrating the great gains in blower efficiency to be achieved by using modestly larger ducts.

The following table gives flow rate Q such that friction loss per unit length Δp / L (SI kg / m2 / s2) is 0.082, 0.245, and 0.816, respectively, for a variety of nominal duct sizes. The three values chosen for friction loss correspond to, in US units inch water column per 100 feet, 0.01, .03, and 0.1. Note that, in approximation, for a given value of flow volume, a step up in duct size (say from 100mm to 120mm) will reduce the friction loss by a factor of 3.

Volumetric Flow Q of air at STP where friction loss per unit length Δp / L (SI kg / m2 / s2) is, resp., 0.082, 0.245, and 0.816., for selected Nominal Duct Sizes[19] in smooth duct (ε = 50μm.)
Δp / L 0.082 0.245 0.816
kg / m2 / s2
Duct size Q Q Q
in mm cfm m3/s cfm m3/s cfm m3/s
⁠2+1/2 63 3 0.0012 5 0.0024 10 0.0048
⁠3+1/4 80 5 0.0024 10 0.0046 20 0.0093
4 100 10 0.0045 18 0.0085 36 0.0171
5 125 18 0.0083 33 0.0157 66 0.0313
6 160 35 0.0163 65 0.0308 129 0.0611
8 200 64 0.0301 119 0.0563 236 0.1114
10 250 117 0.0551 218 0.1030 430 0.2030
12 315 218 0.1031 407 0.1919 799 0.3771
16 400 416 0.1965 772 0.3646 1513 0.7141
20 500 759 0.3582 1404 0.6627 2743 1.2945
24 630 1411 0.6657 2603 1.2285 5072 2.3939
32 800 2673 1.2613 4919 2.3217 9563 4.5131
40 1000 4847 2.2877 8903 4.2018 17270 8.1504
48 1200 7876 3.7172 14442 6.8161 27969 13.2000

Note that, for the chart and table presented here, flow is in the turbulent, smooth pipe domain, with R* < 5 in all cases.

Notes

Further reading

  • Nikuradse, J. (1932). "Gesetzmassigkeiten der Turbulenten Stromung in Glatten Rohren" (PDF). VDI Forschungsheft Arb. Ing.-Wes. 356: 1–36. – In translation, NACA TT F-10 359. The data are available in digital form.
  • Kemler, E. (1933). "A Study of the Data on the Flow of Fluid in Pipes". Transactions of the ASME. 55 (Hyd-55-2): 7–32. Cited by Moody, L. F. (1944)
  • Nikuradse, J. (1933). "Strömungsgesetze in rauen Rohren" (PDF). V. D. I. Forschungsheft. 361: 1–22. – In English translation, as NACA TM 1292, 1950. The data show in detail the transition region for pipes with high relative roughness (ε/D > 0.001).
  • Colebrook, C. F.; White, C. M. (1937). "Experiments with Fluid Friction in Roughened Pipes". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 161 (906): 367–381. Bibcode:1937RSPSA.161..367C. doi:10.1098/rspa.1937.0150.
  • Colebrook, C. F. (February 1939). "Turbulent flow in pipes, with particular reference to the transition region between smooth and rough pipe laws". Journal of the Institution of Civil Engineers.
  • Rouse, H. (1943). Evaluation of Boundary Roughness. Proceedings Second Hydraulic Conference, University of Iowa Bulletin 27. Cited by Moody, L. F. (1944)
  • Rouse, H. (1946). Elementary Mechanics of Fluids. John Wiley and Sons. pp. 376. Exhibits Nikuradse data.
  • U.S. Bureau of Reclamation (1965). "Friction factors for large conduit flowing full". Engineering Monograph No. 7. Washington, D.C.: U.S. Dept. of Interior. Large amounts of field data on commercial pipes. The Colebrook–White equation was found inadequate over a wide range of flow conditions.
  • Swanson, C. J.; Julian, B.; Ihas, G. G.; Donnelly, R. J. (2002). "Pipe flow measurements over a wide range of Reynolds numbers using liquid helium and various gases". J. Fluid Mech. 461 (1): 51–60. Bibcode:2002JFM...461...51S. doi:10.1017/S0022112002008595. S2CID 120934829.
  • McKeon, B. J.; Swanson, C. J.; Zagarola, M. V; Donnelly, R. J.; Smits, A. J. (2004). "Friction factors for smooth pipe flow" (PDF). J. Fluid Mech. 511: 41–44. Bibcode:2004JFM...511...41M. doi:10.1017/S0022112004009796. S2CID 122063338. Retrieved 20 October 2015. Shows friction factor in the smooth flow region for 1 < Re < 108 from two very different measurements.
  • Shockling, M.A.; Allen, J.J.; Smits, A.J. (2006). "Roughness effects in turbulent pipe flow". J. Fluid Mech. 564: 267–285. Bibcode:2006JFM...564..267S. doi:10.1017/S0022112006001467 (inactive 29 November 2024). S2CID 120958504.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  • Allen, J.J.; Shockling, M.; Kunkel, G.; Smits, A.J. (2007). "Turbulent flow in smooth and rough pipes". Phil. Trans. R. Soc. A. 365 (1852): 699–714. Bibcode:2007RSPTA.365..699A. doi:10.1098/rsta.2006.1939. PMID 17244585. S2CID 2636599.

References

  1. ^ a b Munson, B.R. (2006). Fundamentals of Fluid Mechanics (5 ed.). Hoboken, NJ: Wiley & Sons.
  2. ^ Allen, J.J.; Shockling, M.; Kunkel, G.; Smits, A.J. (2007). "Turbulent flow in smooth and rough pipes". Phil. Trans. R. Soc. A. 365 (1852): 699–714. Bibcode:2007RSPTA.365..699A. doi:10.1098/rsta.2006.1939. PMID 17244585. S2CID 2636599. Per EuRoPol GAZ website.
  3. ^ "Pipe Roughness". Pipe Flow Software. Retrieved 5 October 2015.
  4. ^ "Pipe Roughness Data". Efunda.com. Retrieved 5 October 2015.
  5. ^ "Pipe Friction Loss Calculations". Pipe Flow Software. Retrieved 5 October 2015. The friction factor C in the Hazen-Williams formula takes on various values depending on the pipe material, in an attempt to account for surface roughness.
  6. ^ a b c d e f g h Chung, Yongmann. "ES2A7 laboratory Exercises" (PDF). University of Warwick, School of Engineering. Retrieved 20 October 2015.
  7. ^ a b Sentürk, Ali. "Pipe Flow" (PDF). T.C. İSTANBUL KÜLTÜR UNIVERSITY. Retrieved 20 October 2015.
  8. ^ a b "On-Line Duct Friction Loss". FreeCalc.com. Retrieved 8 October 2015.
  9. ^ Brown, G.O. (2003). "The History of the Darcy-Weisbach Equation for Pipe Flow Resistance". Environmental and Water Resources History. American Society of Civil Engineers. pp. 34–43. doi:10.1061/40650(2003)4.
  10. ^ Nikuradse, J. (1933). "Strömungsgesetze in Rauen Rohren". V. D. I. Forschungsheft. 361: 1–22.
  11. ^ Moody, L. F. (1944), "Friction factors for pipe flow", Transactions of the ASME, 66 (8): 671–684
  12. ^ Rao, A.; Kumar, B. "Friction Factor for Turbulent Pipe Flow" (PDF). Retrieved 20 October 2015.
  13. ^ "Water - Dynamic and Kinetic Viscosity". Engineering Toolbox. Retrieved 5 October 2015.
  14. ^ "Technical Design Data" (PDF). Orion Fittings. Retrieved 29 September 2015.
  15. ^ "Tech Friction Loss Charts" (PDF). Hunter Industries. Retrieved 5 October 2015.
  16. ^ "Pipe Dimensions" (PDF). Spirax Sarco Inc. Retrieved 29 September 2015.
  17. ^ a b Elder, Keith E. "Duct Design" (PDF). Retrieved 8 October 2015.
  18. ^ Beckfeld, Gary D. (2012). "HVAC Calculations and Duct Sizing" (PDF). PDH Online, 5272 Meadow Estates Drive Fairfax, VA 22030. Archived from the original (PDF) on 4 March 2016. Retrieved 8 October 2015.
  19. ^ a b "Circular Duct Sizes". The Engineering Toolbox. Retrieved 25 November 2015.

Read other articles:

Untuk politikus, lihat Charles W. Hutchison. Charles HutchisonFoto Hutchison dalam Moving Picture World (1919)Lahir(1879-12-03)3 Desember 1879Pittsburgh, PennsylvaniaMeninggal30 Mei 1949(1949-05-30) (umur 69)Hollywood, CaliforniaPekerjaanPemeranSutradaraPenulis naskahTahun aktif1914-1944 Charles Hutchison (3 Desember 1879 – 30 Mei 1949) adalah seorang pemeran, sutradara dan penulis naskah asal Amerika Serikat. Ia tampil dalam 49 film antara 1914 dan 1944. Ia juga men...

 

 

Diego BonetaBoneta tahun 2019LahirDiego Andrés González Boneta29 November 1990 (umur 33)Mexico City, MeksikoWarga negara Meksiko Amerika Serikat Spanyol PekerjaanPenyanyipenulis laguaktorTahun aktif2002–sekarangKarier musikGenrePop latinLabelEMISitus webdiegoboneta.com Diego Andrés González Boneta[1] (lahir 29 November 1990)[2] adalah aktor dan penyanyi asal Amerika Serikat kelahiran Meksiko. Dia mendapatkan pengakuan setelah membintangi Rock of Ages (2012) da...

 

 

Maggie MacNealMacNeal pada tahun 1976LahirSjoukje Lucie van 't Spijker5 Mei 1950 (umur 73)Tilburg, BelandaNama lainSjoukje SmitPekerjaanMusikusPembawa acarapenyanyiTahun aktif1971—Karier musikGenrePopInstrumenVokalArtis terkaitMouth & MacNealMarga Bult Sjoukje Lucie van 't Spijker (lahir 5 Mei 1950), lebih dikenali sebagai Maggie MacNeal dan kemudian Sjoukje Smit, adalah seorang penyanyi dan pembawa acara berkebangsaan Belanda. Biografi Maggie MacNeal tampil di Gouden No...

Uma Bharti Menteri Sumber Daya Air, Pengembangan Sungai dan Rejuvenasi GangaPetahanaMulai menjabat 26 Mei 2014Perdana MenteriNarendra Modi PendahuluTidak adaPenggantiPetahanaDaerah pemilihanJhansiAnggota ParlemenPetahanaMulai menjabat 16 Mei 2014Daerah pemilihanJhansi,Uttar PradeshKetua Menteri Madhya Pradesh ke-16Masa jabatan8 Desember 2003 – 22 Agustus 2004 PendahuluDigvijaya SinghPenggantiBabulal GaurDaerah pemilihanMalhara Informasi pribadiLahir03 Mei 1959 (umur 64)Tikamgar...

 

 

Untuk politikus California, lihat Mike Morrell. Michael Morell Direktur Badan Intelijensi PusatMasa jabatan9 November 2012 – 8 Maret 2013PresidenBarack Obama PendahuluDavid PetraeusPenggantiJohn O. BrennanMasa jabatan1 Juli 2011 – 6 September 2011PresidenBarack Obama PendahuluLeon PanettaPenggantiDavid PetraeusWakil Direktur Badan Intelijensi Pusat ke-3Masa jabatan6 Mei 2010 – 9 Agustus 2013PresidenBarack Obama PendahuluStephen KappesPenggantiAvril Haines Info...

 

 

German mathematician and philosopher (1646–1716) Leibniz redirects here. For other uses, see Leibniz (disambiguation). Gottfried Wilhelm LeibnizPortrait, 1695Born1 July 1646Leipzig, Saxony, Holy Roman EmpireDied14 November 1716(1716-11-14) (aged 70)Hanover, Electorate of Hanover, Holy Roman EmpireEducation Alte Nikolaischule [de] Leipzig University (BA, 1662; MA, 1664; LLB, 1665; Dr. phil. hab., 1666) University of Jena(1663)[8] University of Altdorf(Dr. jur., 1666...

Teks berbahasa Sanskerta Sūtra Hati (Inggris: Heart Sūtra, dalam naskah Siddhaṃ. Replika dari manuskrip daun palem tertanggal 609 M. Teks berbahasa Tionghoa Sūtra Hati, oleh pelajar dan kaligrafer Ouyang Xun, tahun 635 M. Teks berbahasa Tionghoa Sūtra Hati, oleh seniman dan kaligrafer Dinasti Yuan Zhao Mengfu (1254–1322 EU). Bagian dari serialAgama Buddha Zen Lima Kelompok Caodong / SōtōLinji / RinzaiFayan / HōgenGuiyang / IgyōYunmen / Unmon Tata cara Meditasi dudukSamādhiPen...

 

 

English punk rock band For other uses, see Sex Pistols (disambiguation). Sex PistolsThe Sex Pistols performing in Paradiso, 1977. From left: Paul Cook, Glen Matlock, Johnny Rotten and Steve Jones.Background informationOriginLondon, EnglandGenresPunk rockDiscographySex Pistols discographyYears active 1975–1978 1996 2002–2003 2007–2008 Labels EMI A&M Virgin Universal Warner Bros. Spinoffs Rich Kids Public Image Ltd Vicious White Kids Sham Pistols The Professionals Past members Johnny ...

 

 

Mannheim Pemandangan pusat kota Lambang kebesaranLetak Mannheim NegaraJermanNegara bagianBaden-WürttembergWilayahKarlsruheKreisDistrik kotaPemerintahan • Lord MayorDr. Peter Kurz (SPD)Luas • Total144,96 km2 (5,597 sq mi)Ketinggian97 m (318 ft)Populasi (2008-12-31) • Total311.142 • Kepadatan21/km2 (56/sq mi)Zona waktuWET/WMPET (UTC+1/+2)Kode pos68001–68309Kode area telepon+49 621Pelat kendaraanMASitus webwww....

Lokasi Kabupaten Kepulauan Tanimbar di Provinsi Maluku Berikut ini adalah daftar kecamatan, kelurahan, dan desa di Kabupaten Kepulauan Tanimbar, Provinsi Maluku, Indonesia. Kabupaten Kepulauan Tanimbar terdiri atas 10 kecamatan, 2 kelurahan, dan 80 desa dengan luas wilayah 4.465,79 km² dan jumlah penduduk 122.337 jiwa (2017). Kode Wilayah Kabupaten Kepulauan Tanimbar adalah 81.03.[1][2][3] Sebelum 23 Februari 2019, kabupaten ini bernama Kabupaten Maluku Tenggara Barat...

 

 

Danish wrestler (1882–1942) Carl JensenPersonal informationBorn13 September 1882[1]Dronninglund, Denmark[2]Died4 April 1942 (aged 59)Frederiksberg, DenmarkSportSportGreco-Roman wrestlingClubAK Thor, Copenhagen Medal record Representing  Denmark Olympic Games 1908 London 93 kg Carl Marinus Jensen (13 September 1882 – 4 April 1942) was a Danish sport wrestler who competed in the 1908 Summer Olympics. He won a bronze medal in the Greco-Roman light heavyweight class. ...

 

 

Indian literature Further information: Meitei classical language movement and Meitei linguistic purism movement You can help expand this article with text translated from the corresponding article in Manipuri. Click [show] for important translation instructions. Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article. You must provide copyright attribution in the edit summary accompanying your translat...

Galamai Galamai adalah salah satu makanan kecil dengan bahan dasar tepung beras ketan, gula aren dan santan yang berasal dari daerah Sumatera Barat.[1] Namun, masyarakat juga biasa menggunakan gula pasir untuk makanan galamai tersebut. Beberapa masyarakat di Sumatera Barat pun menyebut Galamai ini dengan nama Kalamai.[1] Jika di daerah lain makanan sejenis ini dikenal sebagai dodol atau jenang.[2] Hampir semua suku di Indonesia memiliki jenis makanan kecil ini. Makanan...

 

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Regional Aviation Association of Australia – news · newspapers · books · scholar · JSTOR (October 2010) (Learn how and when to remove this message) This...

 

 

Jurang Babi Yar di Kiev. Babi Yar (bahasa Rusia: Бабий Яр; Ukraina: Бабин Яр, Babyn Yar) adalah sebuah jurang di Kiev ibu kota Ukraina dan situs dari serangkaian pembantaian yang dilakukan oleh Nazi selama kampanye mereka terhadap Uni Soviet. Yang paling terkenal dan terbaik didokumentasikan dari pembantaian ini berlangsung pada 29-30 September 1941, di mana 33.771 orang Yahudi tewas dalam satu operasi. Keputusan untuk membunuh semua orang Yahudi di Kiev dibuat oleh gube...

Чикагская и Среднеамериканская епархия Страна  США Церковь Русская православная церковь заграницей Дата основания 1954 Управление Главный город Дес-Плейнс Кафедральный собор Покровский собор (Дес Плейнс) Иерарх Архиепископ Чикагский и Средне-Американский Петр (Лукья...

 

 

Сельское поселение России (МО 2-го уровня)Новотитаровское сельское поселение Флаг[d] Герб 45°14′09″ с. ш. 38°58′16″ в. д.HGЯO Страна  Россия Субъект РФ Краснодарский край Район Динской Включает 4 населённых пункта Адм. центр Новотитаровская Глава сельского пос�...

 

 

  关于与「內閣總理大臣」標題相近或相同的条目页,請見「內閣總理大臣 (消歧義)」。 日本國內閣總理大臣內閣總理大臣紋章現任岸田文雄自2021年10月4日在任尊称總理、總理大臣、首相、阁下官邸總理大臣官邸提名者國會全體議員選出任命者天皇任期四年,無連任限制[註 1]設立法源日本國憲法先前职位太政大臣(太政官)首任伊藤博文设立1885年12月22日,...

Molières 1996 Molières Organisée par L'Association professionnelle et artistique du théâtre Détails Dates 6 mai 1996 Lieu Théâtre Marigny, Paris, France Présentateur Michel Drucker Diffusé sur France 2 Site web www.lesmolieres.com Résumé Molière de la comédienne Christiane Cohendy Molière du comédien Didier Sandre Chronologie Molières 1995 Molières 1997 modifier  La 10e Nuit des Molières a eu lieu le 6 mai 1996[1]. Molière du comédien Didier Sandre dans Un mari idé...

 

 

Second-level administrative divisions of Mexico Municipalities of Mexico State Municipalities  Aguascalientes 11  Baja California 7  Baja California Sur 5  Campeche 13  Chiapas 124  Chihuahua 67  Coahuila 38  Colima 10  Durango 39  Guanajuato 46  Guerrero 81  Hidalgo 84  Jalisco 125  México 125  Michoacán 113  Morelos 36  Nayarit 20  Nuevo León 51  Oaxaca 570  Puebla 217  Querétaro 18 ...