Share to: share facebook share twitter share wa share telegram print page

Carmichael function

Carmichael λ function: λ(n) for 1 ≤ n ≤ 1000 (compared to Euler φ function)

In number theory, a branch of mathematics, the Carmichael function λ(n) of a positive integer n is the smallest member of the set of positive integers m having the property that

holds for every integer a coprime to n. In algebraic terms, λ(n) is the exponent of the multiplicative group of integers modulo n. As this is a finite abelian group, there must exist an element whose order equals the exponent, λ(n). Such an element is called a primitive λ-root modulo n.

The Carmichael function is named after the American mathematician Robert Carmichael who defined it in 1910.[1] It is also known as Carmichael's λ function, the reduced totient function, and the least universal exponent function.

The order of the multiplicative group of integers modulo n is φ(n), where φ is Euler's totient function. Since the order of an element of a finite group divides the order of the group, λ(n) divides φ(n). The following table compares the first 36 values of λ(n) (sequence A002322 in the OEIS) and φ(n) (in bold if they are different; the ns such that they are different are listed in OEISA033949).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
λ(n) 1 1 2 2 4 2 6 2 6 4 10 2 12 6 4 4 16 6 18 4 6 10 22 2 20 12 18 6 28 4 30 8 10 16 12 6
φ(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12 28 8 30 16 20 16 24 12

Numerical examples

  • n = 5. The set of numbers less than and coprime to 5 is {1,2,3,4}. Hence Euler's totient function has value φ(5) = 4 and the value of Carmichael's function, λ(5), must be a divisor of 4. The divisor 1 does not satisfy the definition of Carmichael's function since except for . Neither does 2 since . Hence λ(5) = 4. Indeed, . Both 2 and 3 are primitive λ-roots modulo 5 and also primitive roots modulo 5.
  • n = 8. The set of numbers less than and coprime to 8 is {1,3,5,7}. Hence φ(8) = 4 and λ(8) must be a divisor of 4. In fact λ(8) = 2 since . The primitive λ-roots modulo 8 are 3, 5, and 7. There are no primitive roots modulo 8.

Recurrence for λ(n)

The Carmichael lambda function of a prime power can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case λ of the product is the least common multiple of the λ of the prime power factors. Specifically, λ(n) is given by the recurrence

Euler's totient for a prime power, that is, a number pr with p prime and r ≥ 1, is given by

Carmichael's theorems

Carmichael proved two theorems that, together, establish that if λ(n) is considered as defined by the recurrence of the previous section, then it satisfies the property stated in the introduction, namely that it is the smallest positive integer m such that for all a relatively prime to n.

Theorem 1 — If a is relatively prime to n then .[2]

This implies that the order of every element of the multiplicative group of integers modulo n divides λ(n). Carmichael calls an element a for which is the least power of a congruent to 1 (mod n) a primitive λ-root modulo n.[3] (This is not to be confused with a primitive root modulo n, which Carmichael sometimes refers to as a primitive -root modulo n.)

Theorem 2 — For every positive integer n there exists a primitive λ-root modulo n. Moreover, if g is such a root, then there are primitive λ-roots that are congruent to powers of g.[4]

If g is one of the primitive λ-roots guaranteed by the theorem, then has no positive integer solutions m less than λ(n), showing that there is no positive m < λ(n) such that for all a relatively prime to n.

The second statement of Theorem 2 does not imply that all primitive λ-roots modulo n are congruent to powers of a single root g.[5] For example, if n = 15, then λ(n) = 4 while and . There are four primitive λ-roots modulo 15, namely 2, 7, 8, and 13 as . The roots 2 and 8 are congruent to powers of each other and the roots 7 and 13 are congruent to powers of each other, but neither 7 nor 13 is congruent to a power of 2 or 8 and vice versa. The other four elements of the multiplicative group modulo 15, namely 1, 4 (which satisfies ), 11, and 14, are not primitive λ-roots modulo 15.

For a contrasting example, if n = 9, then and . There are two primitive λ-roots modulo 9, namely 2 and 5, each of which is congruent to the fifth power of the other. They are also both primitive -roots modulo 9.

Properties of the Carmichael function

In this section, an integer is divisible by a nonzero integer if there exists an integer such that . This is written as

A consequence of minimality of λ(n)

Suppose am ≡ 1 (mod n) for all numbers a coprime with n. Then λ(n) | m.

Proof: If m = (n) + r with 0 ≤ r < λ(n), then

for all numbers a coprime with n. It follows that r = 0 since r < λ(n) and λ(n) is the minimal positive exponent for which the congruence holds for all a coprime with n.

λ(n) divides φ(n)

This follows from elementary group theory, because the exponent of any finite group must divide the order of the group. λ(n) is the exponent of the multiplicative group of integers modulo n while φ(n) is the order of that group. In particular, the two must be equal in the cases where the multiplicative group is cyclic due to the existence of a primitive root, which is the case for odd prime powers.

We can thus view Carmichael's theorem as a sharpening of Euler's theorem.

Divisibility

Proof.

By definition, for any integer with (and thus also ), we have that , and therefore . This establishes that for all k relatively prime to a. By the consequence of minimality proved above, we have .

Composition

For all positive integers a and b it holds that

.

This is an immediate consequence of the recurrence for the Carmichael function.

Exponential cycle length

If is the biggest exponent in the prime factorization of n, then for all a (including those not coprime to n) and all rrmax,

In particular, for square-free n ( rmax = 1), for all a we have

Average value

For any n ≥ 16:[6][7]

(called Erdős approximation in the following) with the constant

and γ ≈ 0.57721, the Euler–Mascheroni constant.

The following table gives some overview over the first 226 – 1 = 67108863 values of the λ function, for both, the exact average and its Erdős-approximation.

Additionally given is some overview over the more easily accessible “logarithm over logarithm” values LoL(n) := ln λ(n)/ln n with

  • LoL(n) > 4/5λ(n) > n4/5.

There, the table entry in row number 26 at column

  •  % LoL > 4/5   → 60.49

indicates that 60.49% (≈ 40000000) of the integers 1 ≤ n67108863 have λ(n) > n4/5 meaning that the majority of the λ values is exponential in the length l := log2(n) of the input n, namely

ν n = 2ν – 1 sum
average
Erdős average Erdős /
exact average
LoL average % LoL > 4/5 % LoL > 7/8
5 31 270 8.709677 68.643 7.8813 0.678244 41.94 35.48
6 63 964 15.301587 61.414 4.0136 0.699891 38.10 30.16
7 127 3574 28.141732 86.605 3.0774 0.717291 38.58 27.56
8 255 12994 50.956863 138.190 2.7119 0.730331 38.82 23.53
9 511 48032 93.996086 233.149 2.4804 0.740498 40.90 25.05
10 1023 178816 174.795699 406.145 2.3235 0.748482 41.45 26.98
11 2047 662952 323.865169 722.526 2.2309 0.754886 42.84 27.70
12 4095 2490948 608.290110 1304.810 2.1450 0.761027 43.74 28.11
13 8191 9382764 1145.496765 2383.263 2.0806 0.766571 44.33 28.60
14 16383 35504586 2167.160227 4392.129 2.0267 0.771695 46.10 29.52
15 32767 134736824 4111.967040 8153.054 1.9828 0.776437 47.21 29.15
16 65535 513758796 7839.456718 15225.430 1.9422 0.781064 49.13 28.17
17 131071 1964413592 14987.400660 28576.970 1.9067 0.785401 50.43 29.55
18 262143 7529218208 28721.797680 53869.760 1.8756 0.789561 51.17 30.67
19 524287 28935644342 55190.466940 101930.900 1.8469 0.793536 52.62 31.45
20 1048575 111393101150 106232.840900 193507.100 1.8215 0.797351 53.74 31.83
21 2097151 429685077652 204889.909000 368427.600 1.7982 0.801018 54.97 32.18
22 4194303 1660388309120 395867.515800 703289.400 1.7766 0.804543 56.24 33.65
23 8388607 6425917227352 766029.118700 1345633.000 1.7566 0.807936 57.19 34.32
24 16777215 24906872655990 1484565.386000 2580070.000 1.7379 0.811204 58.49 34.43
25 33554431 96666595865430 2880889.140000 4956372.000 1.7204 0.814351 59.52 35.76
26 67108863 375619048086576 5597160.066000 9537863.000 1.7041 0.817384 60.49 36.73

Prevailing interval

For all numbers N and all but o(N)[8] positive integers nN (a "prevailing" majority):

with the constant[7]

Lower bounds

For any sufficiently large number N and for any Δ ≥ (ln ln N)3, there are at most

positive integers n ≤ N such that λ(n) ≤ ne−Δ.[9]

Minimal order

For any sequence n1 < n2 < n3 < ⋯ of positive integers, any constant 0 < c < 1/ln 2, and any sufficiently large i:[10][11]

Small values

For a constant c and any sufficiently large positive A, there exists an integer n > A such that[11]

Moreover, n is of the form

for some square-free integer m < (ln A)c ln ln ln A.[10]

Image of the function

The set of values of the Carmichael function has counting function[12]

where

Use in cryptography

The Carmichael function is important in cryptography due to its use in the RSA encryption algorithm.

Proof of Theorem 1

For n = p, a prime, Theorem 1 is equivalent to Fermat's little theorem:

For prime powers pr, r > 1, if

holds for some integer h, then raising both sides to the power p gives

for some other integer . By induction it follows that for all a relatively prime to p and hence to pr. This establishes the theorem for n = 4 or any odd prime power.

Sharpening the result for higher powers of two

For a coprime to (powers of) 2 we have a = 1 + 2h2 for some integer h2. Then,

,

where is an integer. With r = 3, this is written

Squaring both sides gives

where is an integer. It follows by induction that

for all and all a coprime to .[13]

Integers with multiple prime factors

By the unique factorization theorem, any n > 1 can be written in a unique way as

where p1 < p2 < ... < pk are primes and r1, r2, ..., rk are positive integers. The results for prime powers establish that, for ,

From this it follows that

where, as given by the recurrence,

From the Chinese remainder theorem one concludes that

See also

Notes

  1. ^ Carmichael, Robert Daniel (1910). "Note on a new number theory function". Bulletin of the American Mathematical Society. 16 (5): 232–238. doi:10.1090/S0002-9904-1910-01892-9.
  2. ^ Carmichaael (1914) p.40
  3. ^ Carmichael (1914) p.54
  4. ^ Carmichael (1914) p.55
  5. ^ Carmichael (1914) p.56
  6. ^ Theorem 3 in Erdős (1991)
  7. ^ a b Sándor & Crstici (2004) p.194
  8. ^ Theorem 2 in Erdős (1991) 3. Normal order. (p.365)
  9. ^ Theorem 5 in Friedlander (2001)
  10. ^ a b Theorem 1 in Erdős (1991)
  11. ^ a b Sándor & Crstici (2004) p.193
  12. ^ Ford, Kevin; Luca, Florian; Pomerance, Carl (27 August 2014). "The image of Carmichael's λ-function". Algebra & Number Theory. 8 (8): 2009–2026. arXiv:1408.6506. doi:10.2140/ant.2014.8.2009. S2CID 50397623.
  13. ^ Carmichael (1914) pp.38–39

References

Read other articles:

تعد إزالة الغابات أو الزَّحْرَجة [1] واحدة من المساهمين الرئيسيين في تغير المناخ، وتأخذ أشكالًا عديدة، منها: حرائق الغابات، وإزالة الأشجار بغرض الزراعة، وتربية الماشية، وقطع الأشجار للحصول على الخشب. تغطي الغابات 31% من مساحة اليابسة على الأرض، وسنويًا نخسر ما مساحته 75,700…

Physiographical region in South Asia This article is about the physiographical region of Eurasia. For the geographical subregion of Asia, see South Asia. The subcontinent redirects here. For general usage of the term, see Continent § Subcontinents. Indian subcontinent Hindu Kush Iranian Plateau Makran Arabian Sea Karakoram Tibetan Plateau Himalaya Brahmaputra Indo-Burma      Range Bay of Bengal Topographic map of the subcontinent and surrounding regions Geopol…

Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. Mời bạn giúp hoàn thiện bài viết này bằng cách bổ sung chú thích tới các nguồn đáng tin cậy. Các nội dung không có nguồn có thể bị nghi ngờ và xóa bỏ. Xin hãy đóng góp cho bài viết này bằng cách phát triển nó. Nếu bài viết đã được phát triển, hãy gỡ bản mẫu này. Thông tin thêm có thể được tìm thấy tại trang thảo…

Government agency in Connecticut Connecticut Department of TransportationAgency overviewFormed1965Preceding agencyConnecticut Highway DepartmentJurisdictionConnecticutHeadquarters2800 Berlin Turnpike, Newington, ConnecticutAgency executiveGarrett T. Eucalitto, CommissionerParent agencyState of ConnecticutWebsitect.gov/dot This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to addi…

هذه المقالة بحاجة لمراجعة خبير مختص في مجالها. يرجى من المختصين في مجالها مراجعتها وتطويرها. (أبريل 2019) استئصال المبيض معلومات عامة الاستعمالات سرطان المبيض  التاريخ وصفها المصدر كتاب العائلة الشمالي،  والموسوعة البريطانية نسخة سنة 1911  تعديل مصدري - تعديل   استئصا

American meteorologist Jerome NamiasJerome Namias, ESSA's top forecaster (NOAA)Born(1910-03-19)March 19, 1910Bridgeport, Connecticut, USDiedFebruary 10, 1997(1997-02-10) (aged 86)San Diego, California, USAlma materMassachusetts Institute of TechnologyScientific careerFieldsMeteorologyAcademic advisorsHurd Curtis Willett Jerome Namias (March 19, 1910 – February 10, 1997) was an American meteorologist, whose research included El Niño. Biography Jerome Jerry Namias was born in Bridgepo…

1969 studio album by Alan SilvaSkillfulnessStudio album by Alan SilvaReleased1969RecordedNovember 1968StudioNew York CityGenreFree jazzLabelESP-DiskESP 1091Alan Silva chronology Skillfulness(1969) Luna Surface(1969) Reissue cover Skillfulness (also released as Skillfullness) is an album by multi-instrumentalist Alan Silva. It was recorded in November 1968 in New York City, and was released in 1969 by ESP-Disk. On the album, Silva is joined by flutist Becky Friend, pianist Dave Burrell, p…

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (أغسطس 2022) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلً…

   2016 TCR International Series Sepang roundRound details Round 10 of 11 rounds in the 2016 TCR International Series Layout of the Sepang International CircuitLocation Sepang International Circuit, Kuala Lumpur, MalaysiaCourse Permanent racing facility 5.543 km (3.445 mi)TCR International SeriesRace 1Date 30 September 2016Laps 11Pole positionDriver Roberto Colciago Target CompetitionTime 2:15.021PodiumFirst Roberto Colciago Target CompetitionSecond Stefano Comini Leopard RacingThird J…

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2021) صالح بن عقيل العقلا معلومات شخصية مكان الميلاد  السعودية تاريخ الوفاة 8 فبراير 1993 الجنسية سعودي الحياة العملية المهنة عسكري  الخدمة العسكرية الولاء  ا…

Serbian writer Aleksandar TišmaBorn(1924-01-16)16 January 1924Horgoš, Kingdom of Serbs, Croats and SlovenesDied15 February 2003(2003-02-15) (aged 79)Novi Sad, Serbia and MontenegroNationalityYugoslavian / SerbianAlma materUniversity of BelgradeOccupation(s)Novelist, translatorAwardsNIN Award (1976)Austrian State Prize for European Literature (1995) Aleksandar Tišma (Serbian Cyrillic: Александар Тишма; 16 January 1924 – 15 February 2003) was a Serbian novelist. Biogr…

Günther Ludwig Stuhlmann (* 10. Februar 1797 in Neumühlen; † 30. März 1872 in Nizza) war ein deutscher Unternehmer und Mäzen. Nach Günther Ludwig Stuhlmann ist der Stuhlmannbrunnen in Altona benannt. Inhaltsverzeichnis 1 Herkunft 2 Die Gasanstalt 3 Der Freimaurer Stuhlmann 4 Tod und Vermächtnis 5 Ehrungen 6 Literatur 7 Weblinks Herkunft Die Christianskirche in Ottensen vor dem Umbau Günther Ludwig Stuhlmann war ein Sohn des Kammerrates Casper Hinrich Stuhlmann und dessen Gattin Sophia D…

Mountain in Wales Coity MountainMynydd CoetyOn Coity MountainHighest pointElevation578 m (1,896 ft)Prominence231 m (758 ft)ListingMarilyn, Dewey, council top (Torfaen, Blaenau Gwent)GeographyLocationTorfaen / Blaenau Gwent, WalesParent rangeBrecon Beacons (outlier)OS gridSO231079Topo mapOS Landranger 161 Coity Mountain (also spelled Coety Mountain, Welsh: Mynydd Coety) is a flat-topped mountain in the South Wales Valleys, between Blaenavon and Abertillery. The highest po…

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Partai Demokrat Bebas Jerman – berita · surat kabar · buku · cendekiawan · JSTOR (March 2016) Partai Demokrat Bebas Freie Demokratische ParteiSingkatanFDPKetua umumChristian LindnerSekretaris UmumVolker Wis…

Public university in Edmond, Oklahoma Central State College redirects here. Not to be confused with Central State University. University of Central OklahomaFormer namesTerritorial Normal SchoolCentral State Normal SchoolCentral State Teachers CollegeCentral State CollegeCentral State UniversityMottoUbi Motus Est (Latin)Motto in EnglishWhere Movement IsTypePublic universityEstablishedDecember 24, 1890 (1890-12-24)Parent institutionOklahoma State System of Higher Education - Re…

Malaysian general In this Malay name, there is no family name. The name Ariffin is a patronymic, and the person should be referred to by the given name, Azizan. The Arabic-derived word bin or binti/binte, if used, means 'son of' or 'daughter of', respectively. Yang Berbahagia General (Rtd) Tan Sri Dato' SriAzizan AriffinPGAT PMN PSM DGPN PNBS SSAP SIMP SPTS DSDK DHMS JSDPallam Raju and General Azizan in 200917th Chief of Defence ForcesIn office1 September 2009 – 15 June 2011Monarc…

American actor This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Scott Tiler …

Assembly constituency in Madhya Pradesh, India HattaConstituency for the Madhya Pradesh Legislative AssemblyConstituency detailsCountryIndiaRegionCentral IndiaStateMadhya PradeshDistrictDamohLS constituencyDamohReservationSCMember of Legislative Assembly16th Madhya Pradesh Legislative AssemblyIncumbent Purusottam Tantuway Hatta PartyBharatiya Janata Party Hatta is one of the 230 Vidhan Sabha (Legislative Assembly) constituencies of Madhya Pradesh state in central India.[1] This constitue…

Notre-Dame de Québec Die Kathedralbasilika Notre-Dame de Québec ist der Sitz des römisch-katholischen Erzbistums Québec. Sie befindet sich in der Altstadt (Vieux-Québec) gegenüber dem Hôtel de Ville und ist an das Séminaire de Québec (nicht zu verwechseln mit dem Grand Séminaire de Québec) angebaut. Inhaltsverzeichnis 1 Geschichte 2 Architektur und Ausstattung 3 Orgeln 4 Gräber 5 Einzelnachweise 6 Weblinks Geschichte Innenansicht Notre-Dame de Québec ist der älteste Sitz einer Diö…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Cornel Simanjuntak – berita · surat kabar · buku · cendekiawan · JSTOR Ini adalah nama Batak Toba, marganya adalah Simanjuntak. Foto Cornel Simanjuntak Cornel Simanjuntak (lahir di Pematang Siantar, Sumater…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 3.22.248.162