Primitive root modulo n

In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which gka (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n. So g is a primitive root modulo n if and only if g is a generator of the multiplicative group of integers modulo n.

Gauss defined primitive roots in Article 57 of the Disquisitiones Arithmeticae (1801), where he credited Euler with coining the term. In Article 56 he stated that Lambert and Euler knew of them, but he was the first to rigorously demonstrate that primitive roots exist for a prime n. In fact, the Disquisitiones contains two proofs: The one in Article 54 is a nonconstructive existence proof, while the proof in Article 55 is constructive.

A primitive root exists if and only if n is 1, 2, 4, pk or 2pk, where p is an odd prime and k > 0. For all other values of n the multiplicative group of integers modulo n is not cyclic.[1][2][3] This was first proved by Gauss.[4]

Elementary example

The number 3 is a primitive root modulo 7[5] because

Here we see that the period of 3k modulo 7 is 6. The remainders in the period, which are 3, 2, 6, 4, 5, 1, form a rearrangement of all nonzero remainders modulo 7, implying that 3 is indeed a primitive root modulo 7. This derives from the fact that a sequence (gk modulo n) always repeats after some value of k, since modulo n produces a finite number of values. If g is a primitive root modulo n and n is prime, then the period of repetition is n − 1. Permutations created in this way (and their circular shifts) have been shown to be Costas arrays.

Definition

If n is a positive integer, the integers from 1 to n − 1 that are coprime to n (or equivalently, the congruence classes coprime to n) form a group, with multiplication modulo n as the operation; it is denoted by ×
n
, and is called the group of units modulo n, or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this multiplicative group (×
n
) is cyclic if and only if n is equal to 2, 4, pk, or 2pk where pk is a power of an odd prime number.[6][2][7] When (and only when) this group ×
n
is cyclic, a generator of this cyclic group is called a primitive root modulo n[8] (or in fuller language primitive root of unity modulo n, emphasizing its role as a fundamental solution of the roots of unity polynomial equations Xm
− 1 in the ring n), or simply a primitive element of ×
n
.

When ×
n
is non-cyclic, such primitive elements mod n do not exist. Instead, each prime component of n has its own sub-primitive roots (see 15 in the examples below).

For any n (whether or not ×
n
is cyclic), the order of ×
n
is given by Euler's totient function φ(n) (sequence A000010 in the OEIS). And then, Euler's theorem says that aφ(n) ≡ 1 (mod n) for every a coprime to n; the lowest power of a that is congruent to 1 modulo n is called the multiplicative order of a modulo n. In particular, for a to be a primitive root modulo n, aφ(n) has to be the smallest power of a that is congruent to 1 modulo n.

Examples

For example, if n = 14 then the elements of ×
n
are the congruence classes {1, 3, 5, 9, 11, 13}; there are φ(14) = 6 of them. Here is a table of their powers modulo 14:

 x     x, x2, x3, ... (mod 14)
 1 :   1
 3 :   3,  9, 13, 11,  5,  1 
 5 :   5, 11, 13,  9,  3,  1
 9 :   9, 11,  1
11 :  11,  9,  1
13 :  13,  1

The order of 1 is 1, the orders of 3 and 5 are 6, the orders of 9 and 11 are 3, and the order of 13 is 2. Thus, 3 and 5 are the primitive roots modulo 14.

For a second example let n = 15 . The elements of ×
15
are the congruence classes {1, 2, 4, 7, 8, 11, 13, 14}; there are φ(15) = 8 of them.

 x     x, x2, x3, ... (mod 15)
 1 :   1
 2 :   2,  4,  8, 1 
 4 :   4,  1
 7 :   7,  4, 13, 1
 8 :   8,  4,  2, 1
11 :  11,  1
13 :  13,  4,  7, 1
14 :  14,  1

Since there is no number whose order is 8, there are no primitive roots modulo 15. Indeed, λ(15) = 4, where λ is the Carmichael function. (sequence A002322 in the OEIS)

Table of primitive roots

Numbers that have a primitive root are of the shape

= {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, ...}.[9]

These are the numbers with kept also in the sequence A033948 in the OEIS.

The following table lists the primitive roots modulo n up to :

primitive roots modulo order
(OEISA000010)
exponent
(OEISA002322)
1 0 1 1
2 1 1 1
3 2 2 2
4 3 2 2
5 2, 3 4 4
6 5 2 2
7 3, 5 6 6
8 4 2
9 2, 5 6 6
10 3, 7 4 4
11 2, 6, 7, 8 10 10
12 4 2
13 2, 6, 7, 11 12 12
14 3, 5 6 6
15 8 4
16 8 4
17 3, 5, 6, 7, 10, 11, 12, 14 16 16
18 5, 11 6 6
19 2, 3, 10, 13, 14, 15 18 18
20 8 4
21 12 6
22 7, 13, 17, 19 10 10
23 5, 7, 10, 11, 14, 15, 17, 19, 20, 21 22 22
24 8 2
25 2, 3, 8, 12, 13, 17, 22, 23 20 20
26 7, 11, 15, 19 12 12
27 2, 5, 11, 14, 20, 23 18 18
28 12 6
29 2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27 28 28
30 8 4
31 3, 11, 12, 13, 17, 21, 22, 24 30 30

Properties

Gauss proved[10] that for any prime number p (with the sole exception of p = 3), the product of its primitive roots is congruent to 1 modulo p.

He also proved[11] that for any prime number p, the sum of its primitive roots is congruent to μ(p − 1) modulo p, where μ is the Möbius function.

For example,

p = 3, μ(2) = −1. The primitive root is 2.
p = 5, μ(4) = 0. The primitive roots are 2 and 3.
p = 7, μ(6) = 1. The primitive roots are 3 and 5.
p = 31, μ(30) = −1. The primitive roots are 3, 11, 12, 13, 17, 21, 22 and 24.

E.g., the product of the latter primitive roots is , and their sum is .

If is a primitive root modulo the prime , then .

Artin's conjecture on primitive roots states that a given integer a that is neither a perfect square nor −1 is a primitive root modulo infinitely many primes.

Finding primitive roots

No simple general formula to compute primitive roots modulo n is known.[a][b] There are however methods to locate a primitive root that are faster than simply trying out all candidates. If the multiplicative order (its exponent) of a number m modulo n is equal to (the order of ×
n
), then it is a primitive root. In fact the converse is true: If m is a primitive root modulo n, then the multiplicative order of m is We can use this to test a candidate m to see if it is primitive.

For first, compute Then determine the different prime factors of , say p1, ..., pk. Finally, compute

using a fast algorithm for modular exponentiation such as exponentiation by squaring. A number g for which these k results are all different from 1 is a primitive root.

The number of primitive roots modulo n, if there are any, is equal to[12]

since, in general, a cyclic group with r elements has generators.

For prime n, this equals , and since the generators are very common among {2, ..., n−1} and thus it is relatively easy to find one.[13]

If g is a primitive root modulo p, then g is also a primitive root modulo all powers pk unless gp−1 ≡ 1 (mod p2); in that case, g + p is.[14]

If g is a primitive root modulo pk, then g is also a primitive root modulo all smaller powers of p.

If g is a primitive root modulo pk, then either g or g + pk (whichever one is odd) is a primitive root modulo 2pk.[14]

Finding primitive roots modulo p is also equivalent to finding the roots of the (p − 1)st cyclotomic polynomial modulo p.

Order of magnitude of primitive roots

The least primitive root gp modulo p (in the range 1, 2, ..., p − 1) is generally small.

Upper bounds

Burgess (1962) proved[15][16] that for every ε > 0 there is a C such that

Grosswald (1981) proved[15][17] that if , then

Shoup (1990, 1992) proved,[18] assuming the generalized Riemann hypothesis, that gp = O(log6 p).

Lower bounds

Fridlander (1949) and Salié (1950) proved[15] that there is a positive constant C such that for infinitely many primes gp > C log p.

It can be proved[15] in an elementary manner that for any positive integer M there are infinitely many primes such that M < gp < pM.

Applications

A primitive root modulo n is often used in pseudorandom number generators[19] and cryptography, including the Diffie–Hellman key exchange scheme. Sound diffusers have been based on number-theoretic concepts such as primitive roots and quadratic residues.[20][21]

See also

Footnotes

  1. ^ "One of the most important unsolved problems in the theory of finite fields is designing a fast algorithm to construct primitive roots. von zur Gathen & Shparlinski 1998, pp. 15–24
  2. ^ "There is no convenient formula for computing [the least primitive root]." Robbins 2006, p. 159

References

  1. ^ Weisstein, Eric W. "Modulo Multiplication Group". MathWorld.
  2. ^ a b "Primitive root - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2024-11-05.
  3. ^ (Vinogradov 2003, pp. 105–121, § VI PRIMITIVE ROOTS AND INDICES)
  4. ^ (Gauss 1986, arts. 52–56, 82–891)
  5. ^ Stromquist, Walter. "What are primitive roots?". Mathematics. Bryn Mawr College. Archived from the original on 2017-07-03. Retrieved 2017-07-03.
  6. ^ Weisstein, Eric W. "Modulo Multiplication Group". MathWorld.
  7. ^ Vinogradov 2003, pp. 105–121, § VI Primitive roots and indices.
  8. ^ Vinogradov 2003, p. 106.
  9. ^ Gauss 1986, art 92.
  10. ^ Gauss 1986, arts. 80.
  11. ^ Gauss 1986, art 81.
  12. ^ (sequence A010554 in the OEIS)
  13. ^ Knuth, Donald E. (1998). Seminumerical Algorithms. The Art of Computer Programming. Vol. 2 (3rd ed.). Addison–Wesley. section 4.5.4, page 391.
  14. ^ a b Cohen, Henri (1993). A Course in Computational Algebraic Number Theory. Berlin: Springer. p. 26. ISBN 978-3-540-55640-4.
  15. ^ a b c d Ribenboim, Paulo (1996). The New Book of Prime Number Records. New York, NY: Springer. p. 24. ISBN 978-0-387-94457-9.
  16. ^ Burgess, D. A. (1962). "On Character Sums and Primitive Roots †". Proceedings of the London Mathematical Society. s3-12 (1): 179–192. doi:10.1112/plms/s3-12.1.179.
  17. ^ Grosswald, E. (1981). "On Burgess' Bound for Primitive Roots Modulo Primes and an Application to Γ(p)". American Journal of Mathematics. 103 (6): 1171–1183. doi:10.2307/2374229. ISSN 0002-9327. JSTOR 2374229.
  18. ^ Bach & Shallit 1996, p. 254.
  19. ^ Gentle, James E. (2003). Random number generation and Monte Carlo methods (2nd ed.). New York: Springer. ISBN 0-387-00178-6. OCLC 51534945.
  20. ^ Walker, R. (1990). The design and application of modular acoustic diffusing elements (PDF). BBC Research Department (Report). British Broadcasting Corporation. Retrieved 25 March 2019.
  21. ^ Feldman, Eliot (July 1995). "A reflection grating that nullifies the specular reflection: A cone of silence". J. Acoust. Soc. Am. 98 (1): 623–634. Bibcode:1995ASAJ...98..623F. doi:10.1121/1.413656.

Sources

  • Carella, N. A. (2015). "Least Prime Primitive Roots". International Journal of Mathematics and Computer Science. 10 (2): 185–194. arXiv:1709.01172.

The Disquisitiones Arithmeticae has been translated from Gauss's Ciceronian Latin into English and German. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes.

Further reading

Read other articles:

Muhamed Bešić Bešić berlatih di tim Everton pada 2014Informasi pribadiNama lengkap Muhamed Bešić[1]Tanggal lahir 10 September 1992 (umur 31)Tempat lahir Berlin, JermanTinggi 1,77 m (5 ft 9+1⁄2 in)[2]Posisi bermain Gelandang bertahanInformasi klubKlub saat ini EvertonNomor 17Karier junior2004–2009 TB Berlin2009–2010 Hamburger SVKarier senior*Tahun Tim Tampil (Gol)2010–2012 Hamburger SV II 38 (0)2010–2012 Hamburger SV 3 (0)2012–2014 Fer...

 

  لمعانٍ أخرى، طالع مقاطعة يونيون (توضيح). مقاطعة يونيون     الإحداثيات 34°59′N 80°32′W / 34.99°N 80.53°W / 34.99; -80.53  [1] تاريخ التأسيس 1842  سبب التسمية دمج  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى كارولاينا الشمالية  العاص...

 

Valdagnocomune Valdagno – Veduta LocalizzazioneStato Italia Regione Veneto Provincia Vicenza AmministrazioneSindacoGiancarlo Acerbi (centro-sinistra) dal 26-5-2014 (2º mandato dal 10-6-2019) TerritorioCoordinate45°39′N 11°18′E / 45.65°N 11.3°E45.65; 11.3 (Valdagno)Coordinate: 45°39′N 11°18′E / 45.65°N 11.3°E45.65; 11.3 (Valdagno) Altitudine260 m s.l.m. Superficie50,22 km² Abitanti25 747&#...

American politician John Adams Gilmer John Adams Gilmer (November 4, 1805 – May 14, 1868) was a Congressional Representative from North Carolina. Gilmer was born in Guilford County, North Carolina near Greensboro. His parents were Robert Shaw Gilmer and Anne Forbes. He was the brother of Confederate Maj. Gen Jeremy Francis Gilmer. Gilmer attended the public schools and an academy in Greensboro. After receiving his education, he taught school. He then studied law and was admitted to the bar ...

 

Запрос «Узбек» перенаправляется сюда; см. также другие значения. Узбеки Современное самоназвание ўзбеклар / oʻzbeklar / اوزبکلر Численность свыше 37 млн[20] Расселение  Узбекистан: 29.2 млн (2021)  Афганистан: более 3-3,5 млн[1]  Таджикистан: 1,26 млн (2022)[2]  Кырг...

 

Messaging application for Mac OS X iChatDeveloper(s)Apple Inc. AOL (partial)Operating systemmacOSTypeInstant messagingLicenseProprietary iChat (previously iChat AV) is a discontinued instant messaging software application developed by Apple Inc. for use on its Mac OS X operating system. It supported instant text messaging over XMPP/Jingle or OSCAR (AIM) protocol, audio and video calling, and screen-sharing capabilities. It also allowed for local network discussion with users discovered throug...

Questa voce o sezione sull'argomento film drammatici non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Carne trémulaUna scena del filmTitolo originaleCarne trémula Lingua originalespagnolo Paese di produzioneSpagna Anno1997 Durata103 min Generedrammatico, sentimentale, thriller, commedia RegiaPedro Almodóvar SoggettoRuth Rendell (romanzo Car...

 

تشير التسمية الوثنية الجرمانية إلى الممارسات اللاهوتية والدينية للشعوب الجرمانية من شمال غرب أوروبا من العصر الحديدي حتى التنصير وذلك أثناء العصور الوسطى.[1][2][3] وصفت بأنها «نظام من النظرات الدينية المتشابكة والمترابطة ارتباطًا وثيقًا والممارسات المختلفة أ�...

 

 烏克蘭總理Прем'єр-міністр України烏克蘭國徽現任杰尼斯·什米加尔自2020年3月4日任命者烏克蘭總統任期總統任命首任維托爾德·福金设立1991年11月后继职位無网站www.kmu.gov.ua/control/en/(英文) 乌克兰 乌克兰政府与政治系列条目 宪法 政府 总统 弗拉基米尔·泽连斯基 總統辦公室 国家安全与国防事务委员会 总统代表(英语:Representatives of the President of Ukraine) 总...

密西西比州 哥伦布城市綽號:Possum Town哥伦布位于密西西比州的位置坐标:33°30′06″N 88°24′54″W / 33.501666666667°N 88.415°W / 33.501666666667; -88.415国家 美國州密西西比州县朗兹县始建于1821年政府 • 市长罗伯特·史密斯 (民主党)面积 • 总计22.3 平方英里(57.8 平方公里) • 陸地21.4 平方英里(55.5 平方公里) • ...

 

Bài này viết về khái niệm lý thuyết–vật lý. Đối với cách đi bộ, xem Đi chân không. Đối với Tên (pháp danh) của một vị thiền sư, xem Chân Không. Đối với sư cô, xem Chân Không (Sư cô). Một máy bơm chân không đã được mở để lộ cấu trúc bên trong. Chân không (tiếng Anh: vacuum), trong lý thuyết cổ điển là không gian không chứa vật chất. Từ vacuum xuất phát từ một từ Latin vacuus có ng...

 

Christian theological doctrine For the album by Neal Morse, see Sola Scriptura (album). Five solae of theProtestant Reformation Sola scriptura Sola fide Sola gratia Solus Christus Soli Deo gloriavte Sola scriptura (Latin for 'by scripture alone') is a Christian theological doctrine held by most Protestant Christian denominations, in particular the Lutheran and Reformed traditions,[1][2] that posits the Bible as the sole infallible source of authority for Christian faith and pr...

Governo Tambroni Stato Italia Presidente del ConsiglioFernando Tambroni(DC) CoalizioneDCcon l'appoggio esterno del MSI LegislaturaIII Legislatura Giuramento26 marzo 1960 Dimissioni19 luglio 1960 Governo successivoFanfani III27 luglio 1960 Segni II Fanfani III Fernando Tambroni presta giuramento al cospetto del Presidente della Repubblica, Giovanni Gronchi Il Governo Tambroni è stato il quindicesimo esecutivo della Repubblica Italiana, il terzo della III legislatura. Il governo rimase in...

 

2013 studio album by Anoushka ShankarTraces of YouStudio album by Anoushka ShankarReleased4 October 2013 (2013-10-04)GenreIndian musicLabelDeutsche GrammophonProducerNitin SawhneyAnoushka Shankar chronology Traveller(2011) Traces of You(2013) Singles from Traces of You Traces of YouReleased: 22 July 2013 The Sun Won't SetReleased: 11 April 2014 Traces of You is the seventh studio album by British-American sitarist Anoushka Shankar. It was released on 4 October 2013 thr...

 

Cat Aficionado AssociationLogo CAASingkatanCAATanggal pendirian3 Maret 2001Tujuanuntuk mempublikasikan dan memajukan ras-ras kucingLokasiBeijing, TiongkokWilayah layanan Negara-negara di AsiaSitus webTidak ada Cat Aficionado Association (atau CAA,[1] bahasa Indonesia: Perhimpunan Pencinta Kucing) adalah organisasi pendaftaran ras kucing terbesar di Tiongkok yang diakui secara internasional dalam hubungannya dengan American Cat Fanciers Association (ACFA) sebagai pendaftaran ras kucing...

2020 civil riots in Seattle after the murder of George Floyd George Floyd riots in SeattlePart of George Floyd protests in Washington stateProtesters at a sit-in at Seattle City Hall on June 3, 2020DateSummer 2020LocationSeattle, Washington, U.S.Caused by Police brutality Institutional racism against African Americans[1][2] Reaction to the murder of George Floyd Economic, racial and social inequality[2] StatusEnded The city of Seattle experienced protests over the murd...

 

شطيرةشطيرة متكونة من باكون، وخس، وطماطممعلومات عامةالمنشأ إنجلترا النوع طعام يؤكل باليد — bánh (en) المكونات الرئيسية خبز، ولحم، وجبن، وخضار وصلصةتعديل - تعديل مصدري - تعديل ويكي بيانات شطيرة خضار الشطيرة[1] أو الصندويشة أو الساندويتش (عن الإنجليزية) أو الكسكروط[بحاجة �...

 

United Nations resolution adopted in 1998 UN Security CouncilResolution 1195AngolaDate15 September 1998Meeting no.3,925CodeS/RES/1195 (Document)SubjectThe situation in AngolaVoting summary15 voted forNone voted againstNone abstainedResultAdoptedSecurity Council compositionPermanent members China France Russia United Kingdom United StatesNon-permanent members Bahrain Brazil Costa Rica Gabon Gambia Japan Kenya Portugal ...

بوبو أولسون   معلومات شخصية الميلاد 11 يوليو 1928(1928-07-11)هونولولو الوفاة 16 يناير 2002 (73 سنة)هونولولو سبب الوفاة مرض آلزهايمر  الطول 5 قدم 10 1⁄2 بوصة (1.79 م) الجنسية أمريكي الوزن الوزن المتوسط مشكلة صحية مرض آلزهايمر  الحياة العملية المهنة ملاكم  نوع الرياضة ا...

 

KulajdaThe south Bohemian kulajda soupTypeSoupPlace of originCzech RepublicMain ingredientsSour cream, potatoes, dill, quail eggs, mushrooms  Media: Kulajda Kulajda is a Czech cuisine soup. One version is made with sour cream, potatoes, dill and quail egg.[1] Mushrooms are also an important ingredient of the soup.[2] In some regions another sour mushroom based Czech soup kyselo is mistaken named as kulajda. The difference is that kyselo uses sourdough and (most of the...