Share to: share facebook share twitter share wa share telegram print page

Bio-FET

A field-effect transistor-based biosensor, also known as a biosensor field-effect transistor (Bio-FET[1] or BioFET), field-effect biosensor (FEB),[2] or biosensor MOSFET,[3] is a field-effect transistor (based on the MOSFET structure)[3] that is gated by changes in the surface potential induced by the binding of molecules. When charged molecules, such as biomolecules, bind to the FET gate, which is usually a dielectric material, they can change the charge distribution of the underlying semiconductor material resulting in a change in conductance of the FET channel.[4][5] A Bio-FET consists of two main compartments: one is the biological recognition element and the other is the field-effect transistor.[1][6] The BioFET structure is largely based on the ion-sensitive field-effect transistor (ISFET), a type of metal–oxide–semiconductor field-effect transistor (MOSFET) where the metal gate is replaced by an ion-sensitive membrane, electrolyte solution, and reference electrode.[7]

In a typical BioFET, an electrically and chemically insulating layer (e.g. Silica) separates the analyte solution from the semiconducting device. A polymer layer, most commonly APTES, is used to chemically link the surface to a receptor which is specific to the analyte (e.g. biotin or an antibody). Upon binding of the analyte, changes in the electrostatic potential at the surface of the electrolyte-insulator layer occur, which in turn results in an electrostatic gating effect of the semiconductor device, and a measurable change in current between the source and drain electrodes.[7]

Mechanism of operation

Bio-FETs couple a transistor device with a bio-sensitive layer that can specifically detect bio-molecules such as nucleic acids and proteins. A Bio-FET system consists of a semiconducting field-effect transistor that acts as a transducer separated by an insulator layer (e.g. SiO2) from the biological recognition element (e.g. receptors or probe molecules) which are selective to the target molecule called analyte.[8] Once the analyte binds to the recognition element, the charge distribution at the surface changes with a corresponding change in the electrostatic surface potential of the semiconductor. This change in the surface potential of the semiconductor acts like a gate voltage would in a traditional MOSFET, i.e. changing the amount of current that can flow between the source and drain electrodes.[9] This change in current (or conductance) can be measured, thus the binding of the analyte can be detected. The precise relationship between the current and analyte concentration depends upon the region of transistor operation.[10]

Fabrication of Bio-FET

The fabrication of Bio-FET system consists of several steps as follows:

  1. Finding a substrate suitable for serving as a FET site, and forming a FET on the substrate,
  2. Exposing an active site of the FET from the substrate,
  3. Providing a sensing film layer on active site of FET,
  4. Providing a receptor on the sensing film layer in order to be used for ion detection,
  5. Removing a semiconductor layer, and thinning a dielectric layer,
  6. Etching the remaining portion of the dielectric layer to expose an active site of the FET,
  7. Removing the photoresist, and depositing a sensing film layer followed by formation of a photoresist pattern on the sensing film,
  8. Etching the unprotected portion of the sensing film layer, and removing the photoresist[11]

Advantages

The principle of operation of Bio-FET devices based on detecting changes in electrostatic potential due to binding of analyte. This the same mechanism of operation as glass electrode sensors which also detect changes in surface potential but were developed as early as the 1920s. Due to the small magnitude of the changes in surface potential upon binding of biomolecules or changing pH, glass electrodes require a high impedance amplifier which increases the size and cost of the device. In contrast, the advantage of Bio-FET devices is that they operate as an intrinsic amplifier, converting small changes in surface potential to large changes in current (through the transistor component) without the need for additional circuitry. This means BioFETs have the capability to be much smaller and more affordable than glass electrode-based biosensors. If the transistor is operated in the subthreshold region, then an exponential increase in current is expected for a unit change in surface potential.

Bio-FETs can be used for detection in fields such as medical diagnostics,[12][11] biological research, environmental protection and food analysis. Conventional measurements like optical, spectrometric, electrochemical, and SPR measurements can also be used to analyze biological molecules. Nevertheless, these conventional methods are relatively time-consuming and expensive, involving multi-stage processes and also not compatible to real-time monitoring,[13] in contrast to Bio-FETs. Bio-FETs are low weight, low cost of mass production, small size and compatible with commercial planar processes for large-scale circuitry. They can be easily integrated into digital microfluidic devices for Lab-on-a-chip. For example, a microfluidic device can control sample droplet transport whilst enabling detection of bio-molecules, signal processing, and the data transmission, using an all-in-one chip.[14] Bio-FET also does not require any labeling step,[13] and simply utilise a specific molecular (e.g. antibody, ssDNA[15]) on the sensor surface to provide selectivity. Some Bio-FETs display fascinating electronic and optical properties. An example FET would is a glucose-sensitive based on the modification of the gate surface of ISFET with SiO2 nanoparticles and the enzyme glucose oxidase (GOD); this device showed obviously enhanced sensitivity and extended lifetime compared with that without SiO2 nanoparticles.[16]

Bio-FETs are classified based on the bio recognition element used for detection: En-FET which is an enzyme-modified FET, Immuno-FET which is an immunologically modified FET, DNA-FET which is a DNA-modified FET, CPFET which is cell-potential FET, beetle/chip FET and artificial BioFET-based.[7]

Optimization

The choice of reference electrode (liquid gate) or back-gate voltage determines the carrier concentration within the field effect transistor, and therefore its region of operation, therefore the response of the device can be optimised by tuning the gate voltage. If the transistor is operated in the subthreshold region then an exponential increase in current is expected for a unit change in surface potential. The response is often reported as the change in current on analyte binding divided by the initial current (), and this value is always maximal in the subthreshold region of operation due to this exponential amplification.[10][17][18][19] For most devices, optimum signal-to-noise, defined as change in current divided by the baseline noise, () is also obtained when operating in the subthreshold region,[10][20] however as the noise sources vary between devices, this is device dependent.[21]

One optimization of Bio-FET may be to put a hydrophobic passivation surface on the source and the drain to reduce non-specific biomolecular binding to regions which are not the sensing-surface.[22][23] Many other optimisation strategies have been reviewed in the literature.[10][24][25]

History

The MOSFET (metal–oxide–semiconductor field-effect transistor, or MOS transistor) was invented by Mohamed M. Atalla and Dawon Kahng in 1959, and demonstrated in 1960.[26] Two years later, Leland C. Clark and Champ Lyons invented the first biosensor in 1962.[27][28] Biosensor MOSFETs (BioFETs) were later developed, and they have since been widely used to measure physical, chemical, biological and environmental parameters.[3]

The first BioFET was the ion-sensitive field-effect transistor (ISFET), invented by Piet Bergveld for electrochemical and biological applications in 1970.[29][30] Other early BioFETs include the adsorption FET (ADFET) patented by P.F. Cox in 1974, and a hydrogen-sensitive MOSFET demonstrated by I. Lundstrom, M.S. Shivaraman, C.S. Svenson and L. Lundkvist in 1975.[3] The ISFET is a special type of MOSFET with a gate at a certain distance,[3] and where the metal gate is replaced by an ion-sensitive membrane, electrolyte solution and reference electrode.[31] The ISFET is widely used in biomedical applications, such as the detection of DNA hybridization, biomarker detection from blood, antibody detection, glucose measurement, pH sensing, and genetic technology.[31]

By the mid-1980s, other BioFETs had been developed, including the gas sensor FET (GASFET), pressure sensor FET (PRESSFET), chemical field-effect transistor (ChemFET), reference ISFET (REFET), enzyme-modified FET (ENFET) and immunologically modified FET (IMFET).[3] By the early 2000s, BioFETs such as the DNA field-effect transistor (DNAFET), gene-modified FET (GenFET), and cell-potential BioFET (CPFET) had been developed.[31] Current research in this area has produced new formations of the BioFET such as the Organic Electrolyte Gated FET (OEGFET). [32]

See also

  • ChemFET: chemically sensitive field-effect transistor
  • ISFET: ion-sensitive field-effect transistor

References

  1. ^ a b Maddalena, Francesco; Kuiper, Marjon J.; Poolman, Bert; Brouwer, Frank; Hummelen, Jan C.; de Leeuw, Dago M.; De Boer, Bert; Blom, Paul W. M. (2010). "Organic field-effect transistor-based biosensors functionalized with protein receptors" (PDF). Journal of Applied Physics. 108 (12): 124501–124501–4. Bibcode:2010JAP...108l4501M. doi:10.1063/1.3518681. ISSN 0021-8979.
  2. ^ Goldsmith, Brett R.; Locascio, Lauren; Gao, Yingning; Lerner, Mitchell; Walker, Amy; Lerner, Jeremy; Kyaw, Jayla; Shue, Angela; Afsahi, Savannah; Pan, Deng; Nokes, Jolie; Barron, Francie (2019). "Digital Biosensing by Foundry-Fabricated Graphene Sensors". Scientific Reports. 9 (1): 434. arXiv:1808.05557. Bibcode:2019NatSR...9..434G. doi:10.1038/s41598-019-38700-w. ISSN 2045-2322. PMC 6342992. PMID 30670783.
  3. ^ a b c d e f Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. Archived from the original (PDF) on 2021-04-26. Retrieved 2019-10-09.
  4. ^ Brand, U.; Brandes, L.; Koch, V.; Kullik, T.; Reinhardt, B.; Rüther, F.; Scheper, T.; Schügerl, K.; Wang, S.; Wu, X.; Ferretti, R.; Prasad, S.; Wilhelm, D. (1991). "Monitoring and control of biotechnological production processes by Bio-FET-FIA-sensors". Applied Microbiology and Biotechnology. 36 (2): 167–172. doi:10.1007/BF00164414. hdl:10033/623808. ISSN 0175-7598. PMID 1368106. S2CID 3122101.
  5. ^ Lin, M. C.; Chu, C. J.; Tsai, L. C.; Lin, H. Y.; Wu, C. S.; Wu, Y. P.; Wu, Y. N.; Shieh, D. B.; Su, Y. W. (2007). "Control and Detection of Organosilane Polarization on Nanowire Field-Effect Transistors". Nano Letters. 7 (12): 3656–3661. Bibcode:2007NanoL...7.3656L. CiteSeerX 10.1.1.575.5601. doi:10.1021/nl0719170.
  6. ^ Lee, Joonhyung; Dak, Piyush; Lee, Yeonsung; Park, Heekyeong; Choi, Woong; Alam, Muhammad A.; Kim, Sunkook (2014). "Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules". Scientific Reports. 4 (1): 7352. Bibcode:2014NatSR...4E7352L. doi:10.1038/srep07352. ISSN 2045-2322. PMC 4268637. PMID 25516382.
  7. ^ a b c Schöning, Michael J.; Poghossian, Arshak (2002). "Recent advances in biologically sensitive field-effect transistors (BioFETs)" (PDF). The Analyst. 127 (9): 1137–1151. Bibcode:2002Ana...127.1137S. doi:10.1039/B204444G. ISSN 0003-2654. PMID 12375833.
  8. ^ Alena Bulyha, Clemens Heitzinger and Norbert J Mauser: Bio-Sensors: Modelling and Simulation of Biologically Sensitive Field-Effect-Transistors, ERCIM News, 04,2011.
  9. ^ Matsumoto, A; Miyahara, Y (21 November 2013). "Current and emerging challenges of field effect transistor based bio-sensing". Nanoscale. 5 (22): 10702–10718. Bibcode:2013Nanos...510702M. doi:10.1039/c3nr02703a. PMID 24064964.
  10. ^ a b c d Lowe, Benjamin M.; Sun, Kai; Zeimpekis, Ioannis; Skylaris, Chris-Kriton; Green, Nicolas G. (2017). "Field-effect sensors – from pH sensing to biosensing: sensitivity enhancement using streptavidin–biotin as a model system". The Analyst. 142 (22): 4173–4200. Bibcode:2017Ana...142.4173L. doi:10.1039/c7an00455a. ISSN 0003-2654. PMID 29072718.
  11. ^ a b Yuji Miyahara, Toshiya Sakata, Akira Matsumoto: Microbio genetic analysis based on Field Effect Transistors, Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems.
  12. ^ Poghossian, A.; Cherstvy, A.; Ingebrandt, S.; Offenhäusser, A.; Schöning, M.J. (2005). "Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices". Sensors and Actuators B: Chemical. 111–112: 470–480. doi:10.1016/j.snb.2005.03.083. ISSN 0925-4005.
  13. ^ a b K.Y.Park, M.S.Kim, K.M.Park, and S.Y.Choi: Fabrication of BioFET sensor for simultaneous detection of protein and DNA, Electrochem.org.
  14. ^ Choi K, Kim JY, Ahn JH, Choi JM, Im M, Choi YK: Integration of field-effect transistor-based biosensors with a digital microfluidic device for a lab-on-a-chip application, Lab Chip., 2012 Apr
  15. ^ Chu, Chia-Jung; Yeh, Chia-Sen; Liao, Chun-Kai; Tsai, Li-Chu; Huang, Chun-Ming; Lin, Hung-Yi; Shyue, Jing-Jong; Chen, Yit-Tsong; Chen, Chii-Dong (2013). "Improving Nanowire Sensing Capability by Electrical Field Alignment of Surface Probing Molecules". Nano Letters. 13 (6): 2564–2569. Bibcode:2013NanoL..13.2564C. doi:10.1021/nl400645j. PMID 23634905.
  16. ^ Jing-Juan Xu, Xi-Liang Luo and Hong-Yuan Chen: ANALYTICAL ASPECTS OF FET-BASED BIOSENSORS, Frontiers in Bioscience, 10, 420--430, January 1, 2005
  17. ^ Sarkar, Deblina; Liu, Wei; Xie, Xuejun; Anselmo, Aaron C.; Mitragotri, Samir; Banerjee, Kaustav (2014). "MoS2Field-Effect Transistor for Next-Generation Label-Free Biosensors". ACS Nano. 8 (4): 3992–4003. doi:10.1021/nn5009148. ISSN 1936-0851. PMID 24588742.
  18. ^ Wen, Xuejin; Gupta, Samit; Nicholson, Theodore R.; Lee, Stephen C.; Lu, Wu (2011). "AlGaN/GaN HFET biosensors working at subthreshold regime for sensitivity enhancement". Physica Status Solidi C. 8 (7–8): 2489–2491. Bibcode:2011PSSCR...8.2489W. doi:10.1002/pssc.201001174. ISSN 1862-6351.
  19. ^ Sun, K; Zeimpekis, I; Hu, C; Ditshego, N M J; Thomas, O; de Planque, M R R; Chong, H M H; Morgan, H; Ashburn, P (2016). "Effect of subthreshold slope on the sensitivity of nanoribbon sensors" (PDF). Nanotechnology. 27 (28): 285501. Bibcode:2016Nanot..27B5501S. doi:10.1088/0957-4484/27/28/285501. ISSN 0957-4484. PMID 27255984. S2CID 114429804.
  20. ^ Gao, Xuan P. A.; Zheng, Gengfeng; Lieber, Charles M. (2010). "Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors". Nano Letters. 10 (2): 547–552. Bibcode:2010NanoL..10..547G. doi:10.1021/nl9034219. ISSN 1530-6984. PMC 2820132. PMID 19908823.
  21. ^ Rajan, Nitin K.; Routenberg, David A.; Reed, Mark A. (2011). "Optimal signal-to-noise ratio for silicon nanowire biochemical sensors". Applied Physics Letters. 98 (26): 264107–264107–3. Bibcode:2011ApPhL..98z4107R. doi:10.1063/1.3608155. ISSN 0003-6951. PMC 3144966. PMID 21799538.
  22. ^ Kim JY, Choi K, Moon DI, Ahn JH, Park TJ, Lee SY, Choi YK: Surface engineering for enhancement of sensitivity in an underlap-FET biosensor by control of wettability, Biosens Bioelectron., 2013
  23. ^ A. Finn, J.Alderman, J. Schweizer : TOWARDS AN OPTIMIZATION OF FET-BASED BIO-SENSORS, European Cells and Materials, Vol. 4. Suppl. 2, 2002 (pages 21-23)
  24. ^ Schöning, Michael J.; Poghossian, Arshak (2002). "Recent advances in biologically sensitive field-effect transistors (BioFETs)" (PDF). The Analyst. 127 (9): 1137–1151. Bibcode:2002Ana...127.1137S. doi:10.1039/b204444g. ISSN 0003-2654. PMID 12375833.
  25. ^ Schöning, Michael J.; Poghossian, Arshak (2006). "Bio FEDs (Field-Effect Devices): State-of-the-Art and New Directions". Electroanalysis. 18 (19–20): 1893–1900. doi:10.1002/elan.200603609. ISSN 1040-0397.
  26. ^ "1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine: A Timeline of Semiconductors in Computers. Computer History Museum. Retrieved August 31, 2019.
  27. ^ Park, Jeho; Nguyen, Hoang Hiep; Woubit, Abdela; Kim, Moonil (2014). "Applications of Field-Effect Transistor (FET)–Type Biosensors". Applied Science and Convergence Technology. 23 (2): 61–71. doi:10.5757/ASCT.2014.23.2.61. ISSN 2288-6559. S2CID 55557610.
  28. ^ Clark, Leland C.; Lyons, Champ (1962). "Electrode Systems for Continuous Monitoring in Cardiovascular Surgery". Annals of the New York Academy of Sciences. 102 (1): 29–45. Bibcode:1962NYASA.102...29C. doi:10.1111/j.1749-6632.1962.tb13623.x. ISSN 1749-6632. PMID 14021529. S2CID 33342483.
  29. ^ Chris Toumazou; Pantelis Georgiou (December 2011). "40 years of ISFET technology:From neuronal sensing to DNA sequencing". Electronics Letters. Retrieved 13 May 2016.
  30. ^ Bergveld, P. (January 1970). "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements". IEEE Transactions on Biomedical Engineering. BME-17 (1): 70–71. doi:10.1109/TBME.1970.4502688. PMID 5441220.
  31. ^ a b c Schöning, Michael J.; Poghossian, Arshak (10 September 2002). "Recent advances in biologically sensitive field-effect transistors (BioFETs)" (PDF). Analyst. 127 (9): 1137–1151. Bibcode:2002Ana...127.1137S. doi:10.1039/B204444G. ISSN 1364-5528. PMID 12375833.
  32. ^ Massey, Roslyn; Bebe. S; Prakash, R (July 2020). "Aptamer-Enhanced Organic Electrolyte-Gated FET Biosensor for High-Specificity Detection of Cortisol". IEEE Sensors Letters. 4 (7): 1–4. doi:10.1109/LSENS.2020.3002446. S2CID 220308070.

Read other articles:

Assedio di Maastricht del 1673parte Guerra d'OlandaLuigi XIV (sul cavallo bianco) di fronte alla città assediata di MaastrichtData13 giugno-26 giugno 1673 LuogoMaastricht, Paesi Bassi EsitoVittoria della Francia Schieramenti Francia Province Unite Spagna Comandanti Luigi XIV Sébastien Le Prestre de Vauban Jacques de Fariaux Effettivi24.000 fanti,16.000 cavalieri5.000 fanti,1.200 cavalieri Perditesconosciute6.000 tra morti, feriti e prigionieri Voci di battaglie presenti su Wikipedia Manuale V&…

ГоссельменGosselming   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Саррбур-Шато-Сален Кантон Фенетранж Код INSEE 57255 Поштові індекси 57930 Координати 48°47′33″ пн. ш. 7°00′12″ сх. д.H G O Висота 232 - 285 м.н.р.м. Площа 10,15 км² Населення 568 (01-2020[1]) Густота 60…

Church in Georgia, United StatesChurch of Our FatherChurch of Our FatherLocationCorner of Church and Forsyth, Atlanta, GeorgiaCountryUnited StatesDenominationUnitarianHistoryFoundedMarch 27, 1883Founder(s)Rev. George Leonard ChaneyDedicatedApril 23, 1884ArchitectureArchitect(s)G.L. NorrmanStyleGothicCompletedDecember 1883Demolished1900SpecificationsMaterialsExterior: half-timber and half brick construction with high arched roofs covered with red tile. Interior: Georgia pine, oil finish Church in…

Final Kejuaraan Eropa UEFA 2020TurnamenKejuaraan Eropa UEFA 2020 Italia Inggris 1 1 Setelah perpanjangan waktuItalia menang 3–2 lewat adu penaltiTanggal11 Juli 2021 (2021-07-11)StadionStadion Wembley, LondonPemain Terbaik Leonardo Bonucci (Italia)[1]WasitBjörn Kuipers (Belanda)[2]Penonton67.173[3]CuacaBerawan19 °C (66 °F)68% kelembapan[4]← 2016 2024 → Final Kejuaraan Eropa UEFA 2020 adalah pertandingan sepak bola yang berlangsung pa…

Private medical school in Mesa, Arizona 33°22′58″N 111°42′18″W / 33.38278°N 111.70500°W / 33.38278; -111.70500 A.T. Still University - School of Osteopathic Medicine in ArizonaTypePrivate medical schoolEstablished2007PresidentCraig M. Phelps, D.O., FAOASMDeanValerie Sheridan, D.O., FACOS, FACS[1]Academic staff176 full-time[2] 469 part-time[2]Students425[3]LocationMesa, Arizona, United StatesCampus22 acres (8.9 ha)Websiteats…

Russian footballer In this name that follows Eastern Slavic naming conventions, the patronymic is Vladimirovich and the family name is Nikitinsky. Dmitri Nikitinsky Personal informationFull name Dmitri Vladimirovich NikitinskyDate of birth (1992-02-09) 9 February 1992 (age 31)Place of birth Volokolamsk, RussiaHeight 1.80 m (5 ft 11 in)Position(s) Left back[1]Senior career*Years Team Apps (Gls)2009–2010 FC Saturn Moscow Oblast 0 (0)2011–2014 Tom Tomsk 17 (0)201…

Katedral Bunda Kami Diangkat ke SurgaCathédrale Notre-Dame-de-l'AnnonciationKatedral Le PuyAgamaAfiliasi agamaKatolik RomaDistrikKeuskupan Le Puy-en-VelayEcclesiastical or organizational statusKatedral-BasilikaLokasiLokasiLe Puy-en-Velay, PrancisKoordinat45°2′44.1″N 3°53′5.2″E / 45.045583°N 3.884778°E / 45.045583; 3.884778Koordinat: 45°2′44.1″N 3°53′5.2″E / 45.045583°N 3.884778°E / 45.045583; 3.884778{{#coordinates:}}: tida…

この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2015年5月) 独自研究が含まれているおそれがあります。(2015年5月)出典検索?: 島国 – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパン

Not to be confused with Florence Airport or Florence Regional Airport. Airport in Florence, OregonFlorence Municipal AirportIATA: FMUICAO: noneFAA LID: 6S2SummaryAirport typePublicOwnerCity of FlorenceOperatorCity of FlorenceServesFlorence, OregonLocationFlorence, OregonElevation AMSL51 ft / 15.5 mCoordinates43°58′58.1400″N 124°06′40.93″W / 43.982816667°N 124.1113694°W / 43.982816667; -124.1113694Websitehttp://www.ci.florence.or.us/airportRunway…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Perang Tha'if pada hakikatnya merupakan perpanjangan dan kelanjutan dari Perang Hunain. Sebab, mayoritas pelarian Hawazin dan Tsaqif masuk ke Tha'if bersama komandan tertinggi mereka, Malik bin Auf An-Nashri. Mereka bertahan di sana. Karena itu, Rasulull…

Elfriede Geiringeroleh Rob C. Croes / Anefo , 1989LahirElfriede Markovits(1905-02-13)13 Februari 1905Wina, AustriaMeninggal2 Oktober 1998(1998-10-02) (umur 93)London, InggrisSuami/istriErich Geiringer ​ ​(m. 1923⁠–⁠1945)​ (kematiannya) Otto Frank ​(m. 1952⁠–⁠1980)​ (kematiannya)AnakHeinz Geiringer (1926–1945)Eva Schloss (l. 1929) Elfriede Geiringer (née Markovits, 13 Februari 1905 – …

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) دانيلا برنس   معلومات شخصية الميلاد 12 يونيو 1992 (31 سنة)  بريزبان  مواطنة أستراليا  الطول 166 سنتيمتر[1]  الوزن 52 كيلوغرام[1]  الحياة العملية ا…

SarkoplasmaJaringan OtotRincianPengidentifikasiBahasa LatinSarkoplasmaTHH2.00.05.0.00004Daftar istilah anatomi[sunting di Wikidata] Sarkoplasma adalah sitoplasma pada otot yang terdiri dari miofibril dan terpendam dalam serat otot di dalam suatu matriks. Sarkoplasma mengandung kalium, magnesium, fosfat, enzim-enzim, protein, serta mitokondria dalam jumlah banyak. Mitokondria membentuk adenosin trifosfat (ATP) sebagai sumber energi untuk otot yang berkontraksi. Pranala luar sarcoplasm di Kamu…

Zydrunas IlgauskasIlgauskas tampil untuk Cavaliers pada tahun 2009Informasi pribadiLahir5 Juni 1975 (umur 48)Kaunas, Uni SovietKebangsaanLituania / Amerika SerikatTinggi7 ft 3 in (2,21 m)Berat260 pon (118 kg)Informasi karierDraf NBA1996 / Babak: 1 / Urutan pemilihan: ke-20 secara keseluruhanDipilih oleh Cleveland CavaliersKarier bermain1993–2011PosisiCenterNomor11Riwayat karier1993–1996Atletas Kaunas1996–2010Cleveland Cavaliers2010–2011Miami Heat Prestasi da…

Bike rental service in Germany Call a Bike is a dockless bike hire system run by Deutsche Bahn (DB) in several German cities. Developed in 1998 and in operation since 2000, Call a Bike uses a system of authentication codes to automatically lock and unlock bikes. Coverage HamburgBerlinKasselCologneFrankfurtStuttgartMunichclass=notpageimage| Cities in Germany providing city-wide coverage of Call a Bike Availability may be differentiated between cities providing full area coverage, and those only o…

Emmanuelle RybojadNaissance 21 février 1991 (32 ans) ParisNationalité FrançaiseActivité PlasticienneFormation Lycée Janson-de-SaillyMouvement Art contemporain Op ArtInfluencée par Victor VasarelySite web www.emmanuelle-rybojad.commodifier - modifier le code - modifier Wikidata Emmanuelle Rybojad est une artiste plasticienne française née le 21 février 1991 à Paris[1],[2] Son art s'inspire des symboles de la culture pop des années 1970[3] Biographie Elle réalise des œuvres à pa…

Russian figure skater (1932–2023) Oleg ProtopopovProtopopov in 1965Full nameOleg Alekseyevich ProtopopovBorn(1932-07-16)16 July 1932Leningrad, Russian SFSR, USSRDied31 October 2023(2023-10-31) (aged 91)Interlaken, Bern, SwitzerlandHeight1.75 m (5 ft 9 in)Figure skating careerCountry Soviet UnionPartnerLudmila BelousovaRetired1969 Medal record Representing  Soviet Union Pairs' Figure skating Olympic Games 1968 Grenoble Pairs 1964 Innsbruck Pairs World Championships…

Cet article est une ébauche concernant le syndicalisme et le Honduras. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Confédération unitaire des travailleurs du HondurasHistoireFondation 1992CadreType Syndicat professionnelPays  HondurasOrganisationAffiliation Confédération syndicale internationalemodifier - modifier le code - modifier Wikidata La Confederación Unitaria de Trabajadores de Honduras (CUTH …

De Holden Efijy tijdens de AIMS van 2007 De Australian International Motor Show was een jaarlijks autosalon in Sydney, Australië. Tot 2004 was deze beurs bekend onder de naam Sydney Motor Show maar werd in dat jaar omgedoopt naar Australian International Motor Show. Dit om het internationale karakter van de beurs te benadrukken. De Australian International Motor Show hoorde tot de tien grootste van de wereld. De show vond plaats in het Sydney Convention and Exhibition Centre dat dicht bij het c…

Законодавчий відділ Кабінету Міністрів Японії Тип міністерство Японіїdlegislative bureaudЗасновано 1 липня 1962Країна  ЯпоніяШтаб-квартира Central Government Building No. 4d (35°40′23″ пн. ш. 139°44′52″ сх. д. / 35.67313888891666096° пн. ш. 139.74800000002775846° сх. д. / 35.67313888891666096; 139.74800000…

Kembali kehalaman sebelumnya

Lokasi Pengunjung: 18.191.68.18