كلارنس ستانلي فيشر
|
Read other articles:
Foto konjungsi agung pada tahun 2020 diambil dua hari sebelum konjungsi terdekat antara Jupiter (kanan bawah) dan Saturnus (kiri atas) yang dipisahkan oleh sekitar 15 menit busur. Empat satelit Galileo terlihat di sekitar Jupiter: pada sekitar posisi jam 10 di kiri atas Yupiter adalah Kalisto, Ganimede, dan Europa; muncul lebih dekat ke Jupiter di kanan bawahnya adalah Io. Konjungsi agung atau kesegarisan agung adalah konjungsi planet Jupiter dan Saturnus, ketika dua planet mendekat pada titi...
Anna FreudLahir3 Desember 1895WinaMeninggal9 Oktober 1982Dikenal atasmenganalisis hakikat egoKarier ilmiahBidangPsikoanalisisTerinspirasiSigmund Freud Anna Freud (1895-1982) adalah seorang psikolog dari aliran psikoanalisis, yang juga merupakan putri dari Sigmund Freud.[1] Anna Freud terkenal karena bukunya yang berjudul Ego dan Mekanisme Pertahanan (Ego and Defense Mechanism).[1] Di dalam buku tersebut, Anna secara khusus membicarakan mekanisme pertahanan diri yang dilakukan...
Dalam artikel ini, nama keluarganya adalah Junaedy (nama keluarga patronimik Indonesia), dan nama tengahnya Lilliana (nama keluarga matronimik Sunda). Kevin LillianaKevin Liliana, Miss International 2017LahirKevin Lilliana Junaedy5 Januari 1996 (umur 28)Bandung, Jawa Barat, IndonesiaNama lainLillianaAlmamaterUniversitas Kristen MaranathaPekerjaanModelratu kecantikanaktrispembawa acara beritaTinggi176 cm (5 ft 9 in)[1]Gelar Puteri Indonesia Jawa Barat 2017 Pute...
Series of primaries, caucuses and state conventions 2020 Green Party presidential primaries ← 2016 February 29 to July 10, 2020 2024 → 358 delegates to the Green National Convention[1]180 delegates votes needed to win Candidate Howie Hawkins Dario Hunter Uncommitted Home state New York California n/a Delegate count 205 98.5 17.5[b] Contests won 35 11 3[c][d] Popular vote 5,182[a] 3,087[a] 1,662 ...
Part of a series onBritish law Acts of Parliament of the United Kingdom Year 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 ...
Scozianazione costitutiva(EN, SCO) Scotland(GD) Alba (dettagli) (dettagli) LocalizzazioneStato Regno Unito AmministrazioneCapoluogoEdimburgo Primo MinistroJohn Swinney (SNP) dall'8-5-2024 Lingue ufficialiInglese, scots, gaelico scozzese TerritorioCoordinatedel capoluogo55°56′58″N 3°09′37″W / 55.949444°N 3.160278°W55.949444; -3.160278 (Scozia)Coordinate: 55°56′58″N 3°09′37″W / 55.949444°N 3.160278°W55.949444; -3.16027...
谢赫·穆吉布·拉赫曼Sheikh Mujibur Rahmanশেখ মুজিবুর রহমান第1任孟加拉總統任期1971年4月11日—1972年1月12日总理塔杰丁·艾哈迈德前任首任继任Nazrul Islam (Acting)任期1975年1月25日—1975年8月15日总理Muhammad Mansur Ali前任Mohammad Mohammadullah继任孔达卡尔·穆什塔克·艾哈迈德第2任孟加拉總理任期1972年1月12日—1972年1月24日总统阿布·赛义德·乔杜里Mohammad Mohammadullah前任Tajud...
هوا فطيح إحداثيات 32°54′10″N 22°03′05″E / 32.902777777778°N 22.051388888889°E / 32.902777777778; 22.051388888889 [1] المادة كهف كارست الأثريون Charles McBurney، غرايم باركر تعديل مصدري - تعديل هوا فطيح هو كهف كارستي كبير يقع في برقة في شمال شرق ليبيا.[2] كان هذا الموقع ذا أهمية للبحث في التا�...
Election 2006 United States Senate election in Wisconsin ← 2000 November 7, 2006 2012 → Nominee Herb Kohl Robert Lorge Party Democratic Republican Popular vote 1,439,214 630,299 Percentage 67.31% 29.48% County results Precinct results Municipality resultsKohl: 40–50% 50–60% 60–70% 70–80% 80–90% &...
Problem that influences a considerable number of individuals within a society Social problem redirects here. For the journal, see Social Problems. A social issue is a problem that affects many people within a society. It is a group of common problems in present-day society and ones that many people strive to solve. It is often the consequence of factors extending beyond an individual's control. Social issues are the source of conflicting opinions on the grounds of what is perceived as morall...
Device performing a Boolean function Discrete logic redirects here. For discrete circuitry, see Discrete circuit. For discrete TTL logic, see Transistor–transistor logic. For the former image processing company, see Discreet Logic. A logic circuit diagram for a 4-bit carry lookahead binary adder design using only the AND, OR, and XOR logic gates. A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binar...
From left to right: Ted, Robin, Barney, Marshall, Lily. The US sitcom How I Met Your Mother premiered on CBS on September 19, 2005. Created by Craig Thomas and Carter Bays, the show is presented from the perspective of Ted Mosby in 2030 (Future Ted) as he tells his children how he met the titular mother. The show lasted for nine seasons and 208 episodes; the finale first aired on March 31, 2014. A stand-alone sequel series, How I Met Your Father, premiered on Hulu on January 18, 2022. Create...
For the neighborhood of St. Louis, Missouri, see Hamilton Heights, St. Louis. Neighborhood of Manhattan in New York CityHamilton HeightsNeighborhood of ManhattanSt. Mark's United Methodist ChurchLocation in New York CityCoordinates: 40°49′30″N 73°56′56″W / 40.825°N 73.949°W / 40.825; -73.949Country United StatesState New YorkCityNew York CityBoroughManhattanCommunity DistrictManhattan 9[1]Area[2] • Total1.08 km2 (0...
Augusto Murri Deputato alla Camera del RegnoDurata mandato23 novembre 1890 –27 giugno 1891[1] LegislaturaXVII CollegioAscoli Piceno Rettore dell'Alma Mater StudiorumUniversità di BolognaDurata mandato1888 –1889 PredecessoreGiovanni Capellini SuccessoreGiovanni Brugnoli Dati generaliPartito politicoEstrema sinistra storica[1] Titolo di studioLaurea in Medicina UniversitàUniversità di Camerino ProfessioneMedico, docente universit...
Argentine nightclub owner This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Omar Chabán – news · newspapers · books · scholar · JSTOR (November 2014) (Learn how and when to remove this message) Emir Omar Chabán (31 March 1952 – 17 November 2014) was an Argentine impresario, who was sentenced to twenty year...
موسم التناسل أو موسم التكاثر أو موسم التفريخ، هو تلك الفترة المُفضَّلة من السنة عند الكثير من الحيوانات من ثدييات وطيور وغيرها لتتكاثر وتُنجب صغارها، وهي في العادة الفترة التي يَكثرُ فيها الطعام والماء، وتكون الظروف المناخيَّة مؤاتية. تكيَّفت الحيوانات التي تُنجب خلال م...
Dungeons & Dragons fictional creature This article is about the fictional race. For the mythological creatures, see Trow (folklore). DrowFirst appearanceG3 Hall of the Fire Giant King (1977)Based onDark elf, DrowIn-universe informationTypeHumanoid or fey humanoidAlignmentUsually Chaotic Evil or Neutral Evil (1st – 3rd Edition) Any alignment (4th – 5th Edition) The drow (/draʊ/[1][2] or /droʊ/)[3] or dark elves are a dark-skinned and white-haired subrace of el...
Pour les autres membres de la famille, voir famille Nobel. Alfred NobelPortrait photographique d'Alfred Nobel.BiographieNaissance 21 octobre 1833Paroisse de Jakob et Johannes (d) (Stockholm)Décès 10 décembre 1896 (à 63 ans)Sanremo (Italie)Sépulture Cimetière du Nord de Solna (depuis le 30 décembre 1896)Nom de naissance Alfred Bernhard NobelNationalité suédoiseDomicile 16e arrondissement de ParisActivités Chimiste, photographe, fabricant d’armes, philanthrope, industriel, ing...
Hal ClementLahirHarry Clement Stubbs(1922-05-30)30 Mei 1922[1]Somerville, MassachusettsMeninggal29 Oktober 2003(2003-10-29) (umur 81)Milton, Massachusetts, ASNama penaGeorge Richard (sebagai seniman)PekerjaanNovelis, pilot militer, guru sainsKebangsaanAmerikaPeriode1942–2003GenreFiksi ilmiahAliran sastraFiksi ilmiah beratKarya terkenal Mission of Gravity Uncommon Sense Harry Clement Stubbs (30 Mei 1922 – 29 Oktober 2003), yang lebih dikenal dengan...
In matematica, in particolare in analisi complessa, si definisce funzione meromorfa su un sottoinsieme aperto D {\displaystyle {\mathcal {D}}} del piano complesso una funzione che è olomorfa su tutto D {\displaystyle {\mathcal {D}}} ad esclusione di un insieme di punti isolati che sono poli della funzione stessa. Ogni funzione meromorfa su D {\displaystyle {\mathcal {D}}} può essere espressa come rapporto di due funzioni olomorfe (con la funzione denominatore diversa dalla costante 0) defin...