Aluminium–lithium alloys

Aluminium–lithium alloys (Al–Li alloys) are a set of alloys of aluminium and lithium, often also including copper and zirconium. Since lithium is the least dense elemental metal, these alloys are significantly less dense than aluminium. Commercial Al–Li alloys contain up to 2.45% lithium by mass.[1]

Crystal structure

Alloying with lithium reduces structural mass by three effects:

Displacement 
A lithium atom is lighter than an aluminium atom; each lithium atom then displaces one aluminium atom from the crystal lattice while maintaining the lattice structure. Every 1% by mass of lithium added to aluminium reduces the density of the resulting alloy by 3% and increases the stiffness by 5%.[1] This effect works up to the solubility limit of lithium in aluminium, which is 4.2%.
Strain hardening
Introducing another type of atom into the crystal strains the lattice, which helps block dislocations. The resulting material is thus stronger, which allows less of it to be used.[citation needed]
Precipitation hardening
When properly aged, lithium forms a metastable Al3Li phase (δ') with a coherent crystal structure.[2] These precipitates strengthen the metal by impeding dislocation motion during deformation. The precipitates are not stable, however, and care must be taken to prevent overaging with the formation of the stable AlLi (β) phase.[3] This also produces precipitate free zones (PFZs) typically at grain boundaries and can reduce the corrosion resistance of the alloy.[4]

The crystal structure for Al3Li and Al–Li, while based on the FCC crystal system, are very different. Al3Li shows almost the same-size lattice structure as pure aluminium, except that lithium atoms are present in the corners of the unit cell. The Al3Li structure is known as the AuCu3, L12, or Pm3m[5] and has a lattice parameter of 4.01 Å.[3] The Al–Li structure is known as the NaTl, B32, or Fd3m[6] structure, which is made of both lithium and aluminium assuming diamond structures and has a lattice parameter of 6.37 Å. The interatomic spacing for Al–Li (3.19 Å) is smaller than either pure lithium or aluminium.[7]

Usage

Al–Li alloys are primarily of interest to the aerospace industry for their weight advantage. On narrow-body airliners, Arconic (formerly Alcoa) claims up to 10% weight reduction compared to composites, leading to up to 20% better fuel efficiency, at a lower cost than titanium or composites.[8] Aluminium–lithium alloys were first used in the wings and horizontal stabilizer of the North American A-5 Vigilante military aircraft. Other Al–Li alloys have been employed in the lower wing skins of the Airbus A380, the inner wing structure of the Airbus A350, the fuselage of the Bombardier CSeries[9] (where the alloys make up 24% of the fuselage),[10] the cargo floor of the Boeing 777X,[11] and the fan blades of the Pratt & Whitney PurePower geared turbofan aircraft engine.[12] They are also used in the fuel and oxidizer tanks in the SpaceX Falcon 9 launch vehicle, Formula One brake calipers, and the AgustaWestland EH101 helicopter.[13]

The third and final version of the US Space Shuttle's external tank was principally made of Al–Li 2195 alloy.[14] In addition, Al–Li alloys are also used in the Centaur Forward Adapter in the Atlas V rocket,[15] in the Orion Spacecraft, and were to be used in the planned Ares I and Ares V rockets (part of the cancelled Constellation program).

Al–Li alloys are generally joined by friction stir welding. Some Al–Li alloys, such as Weldalite 049, can be welded conventionally; however, this property comes at the price of density; Weldalite 049 has about the same density as 2024 aluminium and 5% higher elastic modulus.[citation needed] Al–Li is also produced in rolls as wide as 220 inches (18 feet; 5.6 metres), which can reduce the number of joins.[16]

Although aluminium–lithium alloys are generally superior to aluminium–copper or aluminium–zinc alloys in ultimate strength-to-weight ratio, their poor fatigue strength under compression remains a problem, which is only partially solved as of 2016.[17][13] Also, high costs (around 3 times or more than for conventional aluminium alloys), poor corrosion resistance, and strong anisotropy of mechanical properties of rolled aluminium–lithium products has resulted in a paucity of applications.

Al-Li alloy powder is used in the production of lightweight sporting goods, including bicycles, tennis rackets, golf clubs, and baseball bats. Its high strength combined with reduced weight significantly enhances performance, speed, and maneuverability.[18][19] It is also used in the automobile industry as body panels, chassis parts, and suspension components.[20]

List of aluminium–lithium alloys

Aside from its formal four-digit designation derived from its element composition, an aluminium–lithium alloy is also associated with particular generations, based primarily on when it was first produced, but secondarily on its lithium content. The first generation lasted from the initial background research in the early 20th century to their first aircraft application in the middle 20th century. Consisting of alloys that were meant to replace the popular 2024 and 7075 alloys directly, the second generation of Al–Li had high lithium content of at least 2%; this characteristic produced a large reduction in density but resulted in some negative effects, particularly in fracture toughness. The third generation is the current generation of Al–Li product that is available, and it has gained wide acceptance by aircraft manufacturers, unlike the previous two generations. This generation has reduced lithium content to 0.75–1.8% to mitigate those negative characteristics while retaining some of the density reduction;[21] third-generation Al–Li densities range from 2.63 to 2.72 grams per cubic centimetre (0.095 to 0.098 pounds per cubic inch).[22]

First-generation alloys (1920s–1960s)

First-generation Al–Li alloys[23][21]
Alloy name/number Applications
1230 (VAD23) Tu-144
1420 MiG-29 fuselages, fuel tanks, and cockpits; Su-27; Tu-156, Tu-204, and Tu-334; Yak-36, and Yak-38 fuselages
1421
2020 A-5 Vigilante wings and horizontal stabilizers

Second-generation alloys (1970s–1980s)

Second-generation Al–Li alloys[23][21]
Alloy name/number Applications
1430
1440
1441 Be-103 and Be-200
1450 An-124 and An-225
1460 McDonnell Douglas reusable launch vehicle (DC-X); Tu-156
2090 (intended to replace 7075) Airbus A330 and Airbus A340 leading edges; C-17 Globemaster; Atlas Centaur payload adapter[24]
2091 (CP 274)[25] (intended to replace 2024) Fokker 28 and Fokker 100 access doors in the fuselage lower fairing[26]
8090 (CP 271) (intended to replace 2024) EH-101 airframe;[9] Airbus A330 and Airbus A340 leading edges; Titan IV payload adapter

Third-generation alloys (1990s–2010s)

Third-generation Al–Li alloys
Alloy name/number Applications
2050 (AirWare I-Gauge)[9][27] Ares I crew launch vehicle – upper stage; A350 wing ribs;[27] A380 lower wing reinforcement[28]
2055[29]
2060 (C14U)
2065[9][22]
2076 [22]
2096
2098[30][22]
2099 (C460) A380 stringers, extruded crossbeams, longitudinal beams, and seat rails;[31] Boeing 787[9]
2195 Ares I crew launch vehicle – upper stage;[9] Last revision of the Space Shuttle Super Lightweight External Tank[32] Falcon 9 propellant tanks[33]
2196 A380 extruded crossbeams, longitudinal beams, and seat rails[31]
2198 (AirWare I-Form) Fuselage skin of the A350 and CSeries;[27] Falcon 9 second-stage rocket[9]
2199 (C47A)
2296 [22]
2297 F-16 bulkheads[22]
2397 F-16 bulkheads; Space Shuttle Super Lightweight External Tank intertank thrust panels[22]
Al–Li TP–1
C99N

Other alloys

Production sites

Key world producers of aluminium–lithium alloy products are Arconic, Constellium, and Kamensk-Uralsky Metallurgical Works.

  • Arconic Technical Center (Upper Burrell, Pennsylvania, USA)[9]
  • Arconic Lafayette (Indiana, USA); annual capacity of 20,000 metric tons (22,000 short tons; 20,000,000 kg; 44,000,000 lb) of aluminium–lithium[9] and capable of casting round and rectangular ingot for rolled, extruded and forged applications
  • Arconic Kitts Green (United Kingdom)
  • Rio Tinto Alcan Dubuc Plant (Canada); capacity 30,000 t (33,000 short tons; 30,000,000 kg; 66,000,000 lb)
  • Constellium Issoire (Puy-de-Dôme), France; annual capacity of 14,000 t (15,000 short tons; 14,000,000 kg; 31,000,000 lb)[9]
  • Kamensk-Uralsky Metallurgical Works (KUMZ)
  • Aleris (Koblenz, Germany)
  • FMC Corporation - FMC spun off its lithium division into Livent, which has now (2024) merged to form Arcadium (https://arcadiumlithium.com/)
  • Southwest Aluminium (PRC)

See also

References

  1. ^ a b Joshi, Amit. "The new generation Aluminium Lithium Alloys" (PDF). Indian Institute of Technology, Bombay. Metal Web News. Archived from the original (PDF) on 28 September 2007. Retrieved 3 March 2008.
  2. ^ Starke, E. A.; Sanders, T. H.; Palmer, I. G. (20 December 2013). "New Approaches to Alloy Development in the Al–Li System". JOM: The Journal of the Minerals, Metals & Materials Society. 33 (8) (published August 1981): 24–33. doi:10.1007/BF03339468. ISSN 1047-4838. OCLC 663900840.
  3. ^ a b Mahalingam, K.; Gu, B. P.; Liedl, G. L.; Sanders, T. H. (February 1987). "Coarsening of [delta]'(Al3Li) Precipitates in Binary Al–Li Alloys". Acta Metallurgica. 35 (2): 483–498. doi:10.1016/0001-6160(87)90254-9. ISSN 0001-6160. OCLC 1460926.
  4. ^ Jha, S. C.; Sanders, T. H.; Dayananda, M. A. (February 1987). "Grain Boundary Precipitate Free Zones in Al–Li Alloys". Acta Metallurgica. 35 (2): 473–482. doi:10.1016/0001-6160(87)90253-7. ISSN 0001-6160. OCLC 1460926.
  5. ^ "Crystal Lattice Structures: The Cu3Au (L12) Structure". Naval Research Laboratory (NRL) Center for Computational Materials Science. 21 October 2004. Archived from the original on 6 April 2010.
  6. ^ "Crystal Lattice Structures: The NaTl (B32) Structure". Naval Research Laboratory (NRL) Center for Computational Materials Science. 17 February 2007. Archived from the original on 12 June 2011.
  7. ^ Kishio, K.; Brittain, J. O. (1979). "Defect structure of [beta]-LiAl". Journal of Physics and Chemistry of Solids. 40 (12): 933–940. Bibcode:1979JPCS...40..933K. doi:10.1016/0022-3697(79)90121-5. ISSN 0038-1098. OCLC 4926011580.
  8. ^ Lynch, Kerry (8 August 2017). "FAA Issues Special Conditions for Global 7000 Alloy". Aviation International News. Archived from the original on 11 August 2017. Retrieved 7 March 2019.
  9. ^ a b c d e f g h i j k l Djukanovic, Goran (5 September 2017). "Aluminium-Lithium Alloys Fight Back". Archived from the original on 23 November 2017. Retrieved 7 March 2019.
  10. ^ Bhaskara, Vinay (2 November 2015). "Battle of the Regionals – ERJ vs CSeries vs MRJ vs SSJ: Introduction and Market Overview". Airways Magazine. Archived from the original on 7 March 2019.
  11. ^ "Alcoa Wins Fourth Boeing Contract in String of Recent Deals" (Press release). 28 January 2016. Archived from the original on 7 March 2019. Retrieved 7 March 2019.
  12. ^ "Alcoa Announces Jet Engine First in $1.1 Billion Supply Agreement with Pratt & Whitney: Unveils World's First Advanced Aluminum Alloy Fan Blade Forging for Pratt & Whitney's Hybrid-Metallic Fan Blade for the PurePower® Engines" (Press release). New York, NY, USA and Farnborough, England, UK. 14 July 2014. Archived from the original on 7 March 2019. Retrieved 7 March 2019.
  13. ^ a b "MEE433B: Aluminium-Lithium Alloys". Queen's University Faculty of Applied Science. Archived from the original on 6 August 2004.
  14. ^ "NASA Facts: Super Lightweight External Tank" (PDF) (Press release). Huntsville, Alabama: National Aeronautics and Space Administration (NASA) Marshall Space Flight Center. April 2005. Archived (PDF) from the original on 4 January 2006.
  15. ^ "Atlas V". Archived from the original on 30 October 2008. Retrieved 7 March 2019.
  16. ^ "Lighter, Stronger and Bigger Than Ever: Arconic helps builds the future of aviation with advanced aluminum-lithium". Archived from the original on 15 April 2017. Retrieved 7 March 2019.
  17. ^ Zhu, Xiao-hui; Zheng, Zi-qiao; Zhong, Shen; Li, Hong-ying (5–9 September 2010). "Effect of Mg and Zn Elements on the Mechanical Properties and Precipitates in 2099 Alloy" (PDF). In Kumai, Shinji (ed.). ICAA12 Yokohama: proceedings. Proceedings of the International Conference on Aluminium Alloys. Vol. 12. Yokohama, Japan: The Japan Institute of Light Metals. pp. 2375–2380. ISBN 978-4-905829-11-9. OCLC 780496456. Archived (PDF) from the original on 6 April 2017.
  18. ^ Chen, J (2010). "Chapter 16 - Surface engineered light alloys for sports equipment". In Dong, Hanshan (ed.). Surface Engineering of Light Alloys. Woodhead Publishing. pp. 549–567. ISBN 9781845695378.
  19. ^ Q. Ashton Acton (2013). Light Metals—Advances in Research and Application: 2013. ScholarlyEditions. p. 578. ISBN 978-1481677202.
  20. ^ "Al-Li alloy powder". Stanford Advanced Materials. Retrieved 7 July 2024.
  21. ^ a b c Rioja, Roberto J.; Liu, John (September 2012). "The Evolution of Al-Li Base Products for Aerospace and Space Applications" (PDF). Metallurgical and Materials Transactions A. 43 (9). Springer US (published 31 March 2012): 3325–3337. Bibcode:2012MMTA...43.3325R. doi:10.1007/s11661-012-1155-z. ISSN 1073-5623. S2CID 136580310. Archived from the original on 20 February 2019. Retrieved 9 March 2019.
  22. ^ a b c d e f g Eswara Prasad, Gokhale & Wanhill 2014; Chapter 15: Aerospace applications of aluminum-lithium alloys
  23. ^ a b Grushko, Ovsyannikov & Ovchinnokov 2016; Chapter 1: Brief history of aluminum-lithium alloy creation
  24. ^ "Fact Sheet 6 – Part II: A Joint Plan for Launcher Technology Development". X-33 History Project. 22 December 1999. Archived from the original on 13 February 2016. Retrieved 11 March 2019.
  25. ^ Eswara Prasad, N.; Gokhale, A. A.; Rama Rao, P. (February–April 2003). "Mechanical behaviour of aluminium-lithium alloys". Sādhanā. 28 (1–2): 209–246. doi:10.1007/BF02717134. ISSN 0256-2499. OCLC 5652684711. S2CID 55008726. Archived from the original on 4 April 2017. Retrieved 18 March 2019.
  26. ^ Vaessen, G. J. H.; van Tilborgh, C.; van Rooijen, H. W. (3–5 October 1988). "Fabrication of test-articles from Al-Li 2091 for Fokker 100" (PDF). AGARD Conference Preoveedings No. 444: New Light Alloys. 67th Meeting of the Structures and Material Panel in Mierlo, Netherlands 3–5 October 1988. Mierlo, Netherlands (published 1 August 1989). pp. 13–1 to 13–12. ISBN 92-835-0519-0. OCLC 228022064. Archived (PDF) from the original on 25 June 2021. Retrieved 18 March 2019. Alt URL NTRL catalog record
  27. ^ a b c Constellium (2 October 2012). Constellium AIRWARE® Technology (Trailer). Archived from the original on 18 December 2021.
  28. ^ Lequeu, Ph.; Lassince, Ph.; Warner, T. (July 2007). "Aluminum alloy development for the Airbus A380 – part 2". Advanced Materials & Processes. Vol. 165, no. 7. pp. 41–44. ISSN 0882-7958. OCLC 210224702. Archived from the original on 17 March 2019. Retrieved 16 March 2019.
  29. ^ Aluminum alloy 2055-T84 extrusions: High strength, fatigue resistant, low density extrusions (PDF) (Technical report). Lafayette, Indiana: Arconic Forgings and Extrusions. December 2016. Archived (PDF) from the original on 26 October 2017.
  30. ^ a b c d e f g Grushko, Ovsyannikov & Ovchinnokov 2016, p. 9 (Table 1.2: Composition of Aluminum–Lithium Alloys Registered in the United States, France, and Great Britain)
  31. ^ a b Pacchione, M.; Telgkamp, J. (5 September 2006). "Challenges of the metallic fuselage" (PDF). 25th International Congress of the Aeronautical Sciences (ICAS 2006). Vol. 4.5.1. Hamburg, Germany. pp. 2110–2121. ISBN 978-0-9533991-7-8. OCLC 163579415. Archived (PDF) from the original on 27 January 2018. Retrieved 7 March 2019. conference directory
  32. ^ Niedzinski, Michael (11 February 2019). "Article: The evolution of Constellium Al-Li alloys for space launch and crew module applications". Light Metal Age: The International Magazine of the Light Metal Industry (published February 2019). p. 36. ISSN 0024-3345. OCLC 930270638. Retrieved 17 March 2019.
  33. ^ "Falcon 9". SpaceX. 2013. Archived from the original on 10 February 2007. Retrieved 6 December 2013.
  34. ^ a b c d e f g Grushko, Ovsyannikov & Ovchinnokov 2016, pp. 7–8 (Table 1.1: Russian Aluminum–Lithium Alloys)
  35. ^ Sauermann, Roger; Friedrich, Bernd; Grimmig, T.; Buenck, M.; Bührig-Polaczek, Andreas (2006). "Development of Aluminum-Lithium alloys processed by the Rheo container process" (PDF). In Kang, C .G.; Kim, S. K.; Lee, S. Y. (eds.). Semi-Solid Processing of Alloys and Composites. Solid State Phenomena. Vol. 116–117 (published 15 October 2006). pp. 513–517. doi:10.4028/www.scientific.net/SSP.116-117.513. ISBN 9783908451266. OCLC 5159219975. Archived (PDF) from the original on 2 February 2017. Retrieved 7 March 2019.

Bibliography

Read other articles:

Louis XIIRaja PrancisBerkuasa7 April 1498 – 1 Januari 1515(16 tahun, 269 hari)Prancis27 Mei 1498 (Reims)PendahuluCharles VIIIPenerusFrancis IInformasi pribadiKelahiran(1462-06-27)27 Juni 1462Château de BloisKematian1 Januari 1515(1515-01-01) (umur 52)Hôtel des TournellesPemakamanBasilika Santo DenisWangsaWangsa ValoisAyahCharles, Adipati OrléansIbuMarie dari ClevesPasanganJoan dari PrancisAnne, Adipati Wanita BretagneMary dari InggrisAnakdi antara lainnya...Claude, Ratu Pr...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. AvgolemonoJenisSaus dan supBahan utamaTelur, sari lemon, kalduSunting kotak info • L • BBantuan penggunaan templat ini  Media: Avgolemono Avgolemono (bahasa Yunani: αυγολέμονο atau αβγολέμονο)[1] a...

 

Untuk kegunaan lain, lihat Get Married (disambiguasi). Get MarriedGenre Drama Komedi BerdasarkanGet Marriedoleh Hanung BramantyoSkenarioCassandra MassardiSutradaraAngling SagaranPemeran Prilly Latuconsina Jeff Smith Endy Arfian Debo Andryos Ajil Ditto Penata musikSlankNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode13ProduksiProduser eksekutif Sutanto Hartono Hermawan Sutanto Tina Arwin Produser Chand Parwez Servia Fiaz Servia Raza Servia SinematografiRico Manuel...

Unincorporated community in Virginia, United States A railroad crossing in Horsey, Virginia Horsey is an unincorporated community in Accomack County, Virginia.[1] References ^ Horsey. Geographic Names Information System. United States Geological Survey, United States Department of the Interior. Retrieved February 9, 2014. vteMunicipalities and communities of Accomack County, Virginia, United StatesCounty seat: AccomacTowns Accomac Belle Haven‡ Bloxom Chincoteague Hallwood Keller Mel...

 

Metro Toronto Convention CentreMetro Toronto Convention Centre, South BuildingAddress255 Front Street WestToronto, OntarioM5V 2W6Coordinates43°38′39″N 79°23′12″W / 43.64417°N 79.38667°W / 43.64417; -79.38667OwnerOxford PropertiesBuilt1980sOpenedOctober 1984Renovated2018Expanded1997Theatre seating1232 seatsEnclosed space • Total spaceover 700,000 sq ft (65,000 m2) • Exhibit hall floorover 442,000 sq&...

 

Pour les articles homonymes, voir BEA. Bras élévateur aérien Camion élévateur des pompiers de Hambourg. Appelé aussi Élévateur ; Auto-élévateur Utilisation Utilisation - Accès et travail en hauteur ou en profondeur-Sauvetages et évacuation de personnes dans des IGH- Acheminer des personnels et du matériel.- Arrosage par l'extérieur. modifier  Le bras élévateur aérien (BEA) est un véhicule des sapeurs-pompiers, dérivé des bras élévateurs civils, permettant nota...

Overview of the foreign relations of Spain Politics of Spain Constitution Constitution Constitutional Court President Cándido Conde-Pumpido Vice President Inmaculada Montalbán Huertas Constitutional history Spanish transition to democracy Human rights Taxation Law Abortion Nationality Capital punishment Life imprisonment The CrownRoyal Household The Monarch (list) Felipe VI Heir presumptive (list) Leonor, Princess of Asturias Royal family Succession to the Spanish throne ExecutiveGovernment...

 

AbeokutaKotaAbeokuta dari Olumo RockAbeokutaLokasi di NigeriaKoordinat: 7°9′39″N 3°20′54″E / 7.16083°N 3.34833°E / 7.16083; 3.34833Koordinat: 7°9′39″N 3°20′54″E / 7.16083°N 3.34833°E / 7.16083; 3.34833Negara NigeriaNegara bagianOgunFounded1830Luas • Kota879 km2 (339 sq mi)Ketinggian66 m (217 ft)Populasi (2006[1]) • Kota451.607 • Kepadatan510/km...

 

Taufik Ansorie Kepala Kepolisian Daerah Kalimantan SelatanMasa jabatan2012–2013PendahuluSyafruddinPenggantiMachfud Arifin Informasi pribadiLahir10 Maret 1957 (umur 67)Magelang, Jawa TengahSuami/istriRr. Endang Rumas TutyAnakAKP Indra Budi WibowoAKP Dimas Satya WicaksonoAlma materAkademi Kepolisian (1980)Karier militerPihak IndonesiaDinas/cabang Kepolisian Negara Republik IndonesiaMasa dinas1980—2015Pangkat Brigadir Jenderal PolisiSatuanIntelSunting kotak info • L...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Sinode Dordrecht Tiga Formula Kesatuan (bahasa Inggris: Three Forms of Unity, Belanda: Drie Formulieren van Enigheidcode: nl is deprecated ) merujuk pada tiga dokumen teologis yang diterima oleh Sinode Dordrecht pada tahun 1618-1619 sebagai pengakuan iman Gereja Reformed. Ketiga dokumen tersebut adalah: Katekismus Heidelberg, ditulis oleh Zacharias Ursinus dan Caspar Olevianus pada tahun 1563. Pengakuan Iman Belgia, disusun oleh Guido de Brès pada tahun 1561. Pasal-Pasal Ajaran Dordrecht...

 

Former British commercial vehicle manufacturing company For the other companies with that name, see Leyland Motors, LDV Group and Leyland Trucks Leyland DAFIndustryCommercial vehiclesPredecessorRover Group (Leyland truck division)Rover Group (Freight Rover division)FoundedFebruary 1987; 37 years ago (February 1987)FounderDAF BeheerRover GroupDefunctFebruary 1993; 31 years ago (February 1993)FateAdministrationSuccessorLeyland TrucksAlbion AutomotiveLDVMultipart Soluti...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Holy Roman Emperor from 1564 to 1576 Maximilian IIPortrait by Nicolas Neufchâtel, c. 1566Holy Roman Emperor (more...) Reign25 July 1564 – 12 October 1576PredecessorFerdinand ISuccessorRudolf IIBorn31 July 1527Vienna, Archduchy of Austria, Holy Roman EmpireDied12 October 1576(1576-10-12) (aged 49)Imperial City of Regensburg, Holy Roman EmpireBurialPrague, St. Vitus CathedralSpouse Maria of Austria ​(m. 1548)​Issue Anna, Queen of Spain Rudolf II, Holy Ro...

 

Canadian daily newspaper TheStar.com redirects here. For other uses, see Star (newspaper). Toronto StarFront page of the January 23, 2013, edition of the Toronto StarTypeDaily newspaperFormatBroadsheetOwner(s)Toronto Star Newspapers Ltd. (subsidiary of Torstar)PublisherJordan BitoveEditorAnne Marie OwensFounded1892; 132 years ago (1892) (as Evening Star)Political alignmentSocial liberalism[1][2][3][4]Headquarters8 Spadina AvenueToronto, Ontari...

Zonas UTM de Europa El sistema de coordenadas universal transversal de Mercator (en inglés Universal Transverse Mercator, UTM) es un sistema de coordenadas basado en la proyección cartográfica transversa de Mercator, que se construye como la proyección de Mercator normal, pero en vez de hacerla tangente al Ecuador, se la hace secante a un meridiano. A diferencia del sistema de coordenadas geográficas, expresadas en longitud y latitud, las magnitudes en el sistema UTM se expresan en metro...

 

Rapid transit system in Moscow Moscow MetroOverviewNative nameМосковский метрополитенOwnerGovernment of MoscowArea servedMoscowLocaleFederal city of Moscow andcities of Kotelniki, Krasnogorsk, Lyubertsy, Reutov in Moscow Oblast, RussiaTransit typeRapid transitNumber of lines19 (including the Moscow Monorail and the Moscow Central Circle)[1]Number of stations294Daily ridership(average) 7.5 million (highest, 26 Dec 2014) 9.715 million [1]Annual ri...

 

سيناريو إخراج مونتاج السينما هي مصطلح يشار به إلى التصوير المتحرك الذي يعرض للجمهور إما في أبنية فيها شاشات كبيرة تسمى دور السينما، أو على شاشات أصغر وخاصة كشاشات التلفزيون. يعتبر التصوير السينمائي وتوابعه من إخراج وتمثيل واحداً من أكثر أنواع الفن شعبية، وهناك أنواع من ا�...

DenUdimu, Dewen“Label MacGregor” dari makam Den di Abydos, EA 55586FiraunMasa pemerintahan42 tahun, dimulai skt. 2970 SM (Dinasti pertama Mesir)KoregensiMerneithPendahuluDjet, MerneithPenggantiAnedjibGelar kerajaan Prenomen  (Praenomen) Nisut-Bity-Khastynsw.t-bjtj-ḫ3st.jRaja Mesir Hulu dan Hilir, ia adalah dua gurun Nama Horus Hor-DenḤr-dnIa yang membawa air Horus emas Iaret-nebu-shenjˁr.t-nbw-šnKobra emas Daftar Raja AbydosSepatisp3t.jIa adalah dua distrik Daftar Raja TurinQen...

 

ГородМетковичхорв. Metkovic Герб 43°03′ с. ш. 17°39′ в. д.HGЯO Страна  Хорватия Жупания Дубровницко-Неретванская Глава Далибор Милан История и география Первое упоминание 1420 Площадь 51,2 км²[1]23,2 км²[1] Высота центра 30 м Часовой пояс UTC+1:00, летом UTC+2:00 Населен...