Lithium superoxide is an unstable inorganicsalt with formula LiO2. A radical compound, it can be produced at low temperature in matrix isolation experiments, or in certain nonpolar, non-protic solvents. Lithium superoxide is also a transient species during the reduction of oxygen in a lithium–air galvanic cell, and serves as a main constraint on possible solvents for such a battery. For this reason, it has been investigated thoroughly using a variety of methods, both theoretical and spectroscopic.
Structure
The LiO2 molecule is a misnomer: the bonds between lithium and oxygen are highly ionic, with almost complete electron-transfer.[1] The force constant between the two oxygen atoms matches the constants measured for the superoxide anion (O−2) in other contexts. The bond length for the O-O bond was determined to be 1.34 Å. Using a simple crystal structure optimization, the Li-O bond was calculated to be approximately 2.10 Å.[2]
There have been quite a few studies regarding the clusters formed by LiO2 molecules. The most common dimer has been found to be the cage isomer. Second to it is the singlet bypyramidal structure. Studies have also been done on the chair complex and the planar ring, but these two are less favorable, though not necessarily impossible.[3]
Production and reactions
Lithium superoxide is extremely reactive because of the odd number of electrons present in the π* molecular orbital of the superoxide anion.[4] Matrix isolation techniques can produce pure samples of the compound, but they are only stable at 15-40 K.[3]
This product typically then reacts and proceed to form lithium peroxide, Li2O2
2 LiO2 → Li2O2 + O2
The mechanism for this last reaction has not been confirmed and developing a complete theory of the oxygen reduction process remains a theoretical challenge as of 2022[update].[9] Indeed, recent work suggests that LiO2 can be stabilized via a suitable cathode made of graphene with iridium nanoparticles.[10]
A significant challenge when investigating these batteries is finding an ideal solvent in which to perform these reactions; current candidates are ether- and amide-based, but these compounds readily react with the superoxide and decompose.[9] Nevertheless, lithium-air cells remain the focus of intense research, because of their large energy density—comparable to the internal combustion engine.[8]
In the atmosphere
Lithium superoxide can also form for extended periods of time in low-density, high-energy environments, such as the upper atmosphere. The mesosphere contains a persistent layer of alkali metal cations ablated from meteors. For sodium and potassium, many of the ions bond to form particles of the corresponding superoxide. It is currently unclear whether lithium should react analogously.[11]
^Andrews, Lester (1969-05-15). "Infrared Spectrum, Structure, Vibrational Potential Function, and Bonding in the Lithium Superoxide Molecule LiO2". The Journal of Chemical Physics. 50 (10). AIP Publishing: 4288–4299. Bibcode:1969JChPh..50.4288A. doi:10.1063/1.1670893. ISSN0021-9606.
^Lau, Kah Chun; Curtiss, Larry A.; Greeley, Jeffrey (2011-11-09). "Density Functional Investigation of the Thermodynamic Stability of Lithium Oxide Bulk Crystalline Structures as a Function of Oxygen Pressure". The Journal of Physical Chemistry C. 115 (47). American Chemical Society (ACS): 23625–23633. doi:10.1021/jp206796h. ISSN1932-7447.
^ abBryantsev, Vyacheslav S.; Blanco, Mario; Faglioni, Francesco (2010-07-16). "Stability of Lithium Superoxide LiO2 in the Gas Phase: Computational Study of Dimerization and Disproportionation Reactions". The Journal of Physical Chemistry A. 114 (31). American Chemical Society (ACS): 8165–8169. Bibcode:2010JPCA..114.8165B. doi:10.1021/jp1047584. ISSN1089-5639. PMID20684589.
^Lindsay, D. M.; Garland, D. A. (1987). "ESR spectra of matrix-isolated lithium superoxide". The Journal of Physical Chemistry. 91 (24). American Chemical Society (ACS): 6158–6161. doi:10.1021/j100308a020. ISSN0022-3654.
^ abDas, Ujjal; Lau, Kah Chun; Redfern, Paul C.; Curtiss, Larry A. (2014-02-13). "Structure and Stability of Lithium Superoxide Clusters and Relevance to Li–O2 Batteries". The Journal of Physical Chemistry Letters. 5 (5). American Chemical Society (ACS): 813–819. doi:10.1021/jz500084e. ISSN1948-7185. PMID26274072.
^ abBryantsev, Vyacheslav S.; Faglioni, Francesco (2012-06-21). "Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li–Air Batteries". The Journal of Physical Chemistry A. 116 (26). American Chemical Society (ACS): 7128–7138. Bibcode:2012JPCA..116.7128B. doi:10.1021/jp301537w. ISSN1089-5639. PMID22681046.
Plane, John M. C.; Rajasekhar, B.; Bartolotti, Libero (1989). "Theoretical and experimental determination of the lithium and sodium superoxide bond dissociation energies". The Journal of Physical Chemistry. 93 (8). American Chemical Society (ACS): 3141–3145. doi:10.1021/j100345a052. ISSN0022-3654.