Zur Erzeugung eines Protein-Tags wird die codierende DNA-Sequenz des Protein-Tags unter Erhalt des Leserasters in die codierende DNA-Sequenz des Fusionsproteins hinter das Start-Codon oder vor das Stop-Codon eingefügt. Dadurch entsteht ein N-terminales bzw. ein C-terminales Protein-Tag am Protein während der Translation.
Gelegentlich muss das Protein-Tag vom Protein nach der Reinigung entfernt werden, was z. B. durch eine Protease-Schnittstelle, 2A-Peptide oder ein induzierbares Intein erreicht werden kann. Der Proteolyse-basierte Ansatz verwendet Proteasen mit längerer Erkennungssequenz, die möglichst nur an der Schnittstelle des Protein-Tags schneiden, z. B. die TEV-Protease,[1]Thrombin, Faktor Xa oder Enteropeptidase. Inteine können durch Thiole oder durch Absenken des pH-Werts ausgelöst werden.[2][3][4]
Alle Protein-Tags erlauben eine der folgenden Methoden:
Immunaffinitätschromatografische Aufreinigung (mit den entsprechenden Antikörpern)
Antikörperbasierte Nachweise (z. B. per Western Blot, Immunhistochemie oder Immunfluoreszenz)
Einige Tags besitzen neben der Bindung eines Antikörpers oder Immunkonjugats noch andere Funktionen wie:
Affinitätschromatografie aufgrund der Affinität zu einem anderen Bindungspartner (z. B. CaM-Tag, CBP-Tag, GST-Tag, MBP-Tag)
Rho1d4 tag, leitet sich von den c-terminalen 9 Aminosäuren des Rinder-Rhodopsins (TETSQVAPA) ab. Sehr spezifischer tag, welcher sich besonders für die Aufreinigung von Membranproteinen eignet.[17]
↑G. Rigaut et al.: A generic protein purification method for protein complex characterization and proteome exploration. In: Nature Biotechnology. 17. Jahrgang, Nr.10, 1999, S.1030–1032, doi:10.1038/13732, PMID 10504710.
↑S. Chong, F. B. Mersha, D. G. Comb, M. E. Scott, D. Landry, L. M. Vence, F. B. Perler, J. Benner, R. B. Kucera, C. A. Hirvonen, J. J. Pelletier, H. Paulus, M. Q. Xu: Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. In: Gene (1997), Band 192(2), S. 271–281. PMID 9224900.
↑S. Chong, G. E. Montello, A. Zhang, E. J. Cantor, W. Liao, M. Q. Xu, J. Benner: Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. In: Nucleic Acids Res. (1998), Band 26(22), S. 5109–15. PMID 9801307; PMC 147948 (freier Volltext).
↑D. W. Wood, W. Wu, G. Belfort, V. Derbyshire, M. Belfort: A genetic system yields self-cleaving inteins for bioseparations. In: Nat Biotechnol. (1999), Band 17(9), S. 889–892. PMID 10471931.
↑ abL. Xing, W. Wu, B. Zhou, Z. Lin: Streamlined protein expression and purification using cleavable self-aggregating tags. In: Microb Cell Fact. (2011), Band 10, S. 42. PMID 21631955; PMC 3124420 (freier Volltext).
↑I. S. Carrico, B. L. Carlson, Carolyn Bertozzi: Introducing genetically encoded aldehydes into proteins. In: Nature chemical biology. Band 3, Nummer 6, Juni 2007, S. 321–322, doi:10.1038/nchembio878. PMID 17450134.
↑Hansjörg Götzke, Markus Kilisch, Markel Martínez-Carranza, Shama Sograte-Idrissi, Abirami Rajavel: The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. In: Nature Communications. Band10, Nr.1, 27. September 2019, ISSN2041-1723, S.1–12, doi:10.1038/s41467-019-12301-7, PMID 31562305, PMC 6764986 (freier Volltext) – (nature.com [abgerufen am 6. Mai 2020]).
↑B. A. Fong, D. W. Wood: Expression and purification of ELP-intein-tagged target proteins in high cell density E. coli fermentation. In: Microb Cell Fact. (2010), Band 9, S. 77. PMID 20959011; PMC 2978133 (freier Volltext).
↑ abThomas P. Hopp, Kathryn S. Prickett, Virginia L. Price, Randell T. Libby, Carl J. March, Douglas Pat Cerretti, David L. Urdal, Paul J. Conlon: A Short Polypeptide Marker Sequence Useful for Recombinant Protein Identification and Purification. In: Bio/Technology. 6, 1988, S. 1204, doi:10.1038/nbt1088-1204.
↑B. A. Griffin, S. R. Adams, R. Y. Tsien: Specific covalent labeling of recombinant protein molecules inside live cells. In: Science. Band 281, Nummer 5374, Juli 1998, S. 269–272, PMID 9657724.
↑D. B. Smith, K. S. Johnson: Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. In: Gene. Band 67, Nummer 1, Juli 1988, S. 31–40, PMID 3047011.
↑ abJ. Field, J. Nikawa, D. Broek, B. MacDonald, L. Rodgers, I. A. Wilson, R. A. Lerner, M. Wigler: Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. In: Molecular and cellular biology. Band 8, Nummer 5, Mai 1988, S. 2159–2165, PMID 2455217, PMC 363397 (freier Volltext).
↑ abE. Hochuli, W. Bannwarth, H. Döbeli, R. Gentz, D. Stüber: Genetic Approach to Facilitate Purification of Recombinant Proteins with a Novel Metal Chelate Adsorbent. In: Nature Biotechnology. 6, 1988, S. 1321, doi:10.1038/nbt1188-1321.
↑B. Zakeri, M. Howarth: Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. In: Journal of the American Chemical Society. Band 132, Nummer 13, April 2010, S. 4526–4527, doi:10.1021/ja910795a. PMID 20235501.
↑ abH. Bedouelle, P. Duplay: Production in Escherichia coli and one-step purification of bifunctional hybrid proteins which bind maltose. Export of the Klenow polymerase into the periplasmic space. In: European Journal of Biochemistry. Band 171, Nummer 3, Februar 1988, S. 541–549, PMID 3278900.
↑P. W. Ho, Z. H. Tse, H. F. Liu, S. Lu, J. W. Ho, M. H. Kung, D. B. Ramsden, S. L. Ho: Assessment of cellular estrogenic activity based on estrogen receptor-mediated reduction of soluble-form catechol-O-methyltransferase (COMT) expression in an ELISA-based system. In: PloS one. Band 8, Nummer 9, 2013, S. e74065, doi:10.1371/journal.pone.0074065, PMID 24040167, PMC 3765251 (freier Volltext).
↑L. L. Molday, R. S. Molday: 1D4: a versatile epitope tag for the purification and characterization of expressed membrane and soluble proteins. In: Methods in molecular biology. Band 1177, 2014, S. 1–15, doi:10.1007/978-1-4939-1034-2_1, PMID 24943310, PMC 4227631 (freier Volltext).
↑A. D. Keefe, D. S. Wilson, B. Seelig, J. W. Szostak: One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. In: Protein expression and purification. Band 23, Nummer 3, Dezember 2001, S. 440–446, doi:10.1006/prep.2001.1515, PMID 11722181.
↑T. G. Schmidt, J. Koepke, R. Frank, A. Skerra: Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. In: Journal of molecular biology. Band 255, Nummer 5, Februar 1996, S. 753–766, doi:10.1006/jmbi.1996.0061, PMID 8636976.
↑S. Munro, H. R. Pelham: Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of Drosophila hsp 70. In: The EMBO journal. Band 3, Nummer 13, Dezember 1984, S. 3087–3093, PMID 6526011, PMC 557822 (freier Volltext).
↑Sean Munro, Hugh R.B. Pelham: An hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. In: Cell. 46, 1986, S. 291, doi:10.1016/0092-8674(86)90746-4.
↑Ashley Waldron: Of Myc and Men. In: blog.addgene.org. 19. Januar 2023, abgerufen am 25. Januar 2023 (englisch).
Weblinks
Artikel Teil1Teil2Teil3 zum Thema in der Zeitschrift Laborjournal