Bourgain hat mehr als 300 wissenschaftliche Arbeiten zu vielen Gebieten der Analysis, der Geometrie der Banachräume, der harmonischen Analysis, der analytischen Zahlentheorie, der Kombinatorik, der Ergodentheorie und über nichtlineare partielle Differentialgleichungen (wie die periodische nichtlineare Schrödingergleichung) veröffentlicht. In ihnen entwickelte er eine Reihe neuer Techniken und zeigte überraschende Beziehungen zwischen verschiedenen Gebieten, die die weitere Entwicklung der Analysis geprägt haben. Er bewies die Eindeutigkeit der Lösungen für das Anfangswertproblem der Korteweg-de-Vries-Gleichung. Bourgain initiierte 1986 das Ribe-Programm in der Funktionalanalysis (nach Martin Ribe) mit einer Arbeit über superreflexive Räume.
Eine von ihm 1986 aufgestellte Schnittvermutung (slicing conjecture) wurde im Rahmen der Verbesserungen zur KLS-Vermutung (die die Vermutung von Bourgain zur Folge hat) mit Hilfe der Methode der stochastischen Lokalisierung von Ronen Eldan in den 2010er Jahren einer Lösung erheblich nähergebracht (siehe den Artikel zu Ronen Eldan).
1983 war er Invited Speaker auf dem Internationalen Mathematikerkongress in Warschau (New Banach space properties of certain spaces of analytic functions) und 1986 in Berkeley(Geometry of Banach spaces and harmonic analysis). 1994 hielt er einen Plenarvortrag auf dem ICM in Zürich: Harmonic analysis and nonlinear partial differential equations, 2008 einen Plenarvortrag auf dem Europäischen Mathematikerkongress in Amsterdam(New Developments in arithmetic combinatorics).
Green’s function estimates for lattice Schrödinger operators and applications. Princeton University Press, 2005.
New Classes of -Spaces. Springer 1981.
Global solution of nonlinear Schrödinger equations. Springer, 1999.
Herausgeber mit Sergiu Klainerman, Carlos Kenig: Mathematical aspects of nonlinear dispersive equations. Princeton University Press, 2007.
Arbeiten (Auswahl)
New Banach space properties of the disc algebra and . Acta Math. 152 (1984), no. 1–2, 1–48.
The metrical interpretation of superreflexivity in Banach spaces. Israel J. Math. 56 (1986), no. 2, 222230.
Mit Vitali Milman: New volume ratio properties for convex symmetric bodies in . Invent. Math. 88 (1987), no. 2, 319–340.
Bounded orthogonal systems and the -set problem. Acta Math. 162 (1989), no. 3–4, 227–245.
Pointwise ergodic theorems for arithmetic sets. With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein. Inst. Hautes Études Sci. Publ. Math. No. 69 (1989), 5–45.
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3 (1993), no. 2, 107–156. II. The KdV-equation. Geom. Funct. Anal. 3 (1993), no. 3, 209–262.
Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. (2) 148 (1998), no. 2, 363–439.
On the dimension of Kakeya sets and related maximal inequalities. Geom. Funct. Anal. 9 (1999), no. 2, 256–282.
Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Amer. Math. Soc. 12 (1999), no. 1, 145–171.
Mit Michael Goldstein, Wilhelm Schlag: Anderson localization for Schrödinger operators on with quasi-periodic potential. Acta Math. 188 (2002), no. 1, 41–86.
Mit Nets Katz, Terence Tao: A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14 (2004), no. 1, 27–57.
Mit Haïm Brezis: New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc. (JEMS) 9 (2007), no. 2, 277–315.
Mit Alex Gamburd: Uniform expansion bounds for Cayley graphs of . Ann. of Math. (2) 167 (2008), no. 2, 625–642.
Mit Alex Gamburd, Peter Sarnak: Affine linear sieve, expanders, and sum-product. Invent. Math. 179 (2010), no. 3, 559–644.
Mit Alex Kantorovich: On the local-global conjecture for integral Apollonian gaskets. With an appendix by Péter P. Varjú. Invent. Math. 196 (2014), no. 3, 589–650.
Mit Dong Li: Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces. Invent. Math. 201 (2015), no. 1, 97–157.
mit Ciprian Demeter und Larry Guth: Proof of the main conjecture in Vinogradovs mean value theorem for degrees higher than three. Ann. of Math. (2) 184 (2016), no. 2, 633–682.