Toroidal planet

Artist's depiction of an earthlike toroidal planet. The odds of any toroidal planet forming might be infinitesimally small yet nonzero; allowing for an infinite universe, not only would a 'donut-shaped planet' almost certainly be bound to occur during the stelliferous era, it would occur infinitely often.[Note 1]

A toroidal planet is a hypothetical type of telluric exoplanet with a toroidal or doughnut shape. While no firm theoretical understanding as to how toroidal planets could form naturally is necessarily known, the shape itself is potentially quasistable,[1] and is analogous to the physical parameters of a speculatively constructible megastructure in self-suspension, such as a Dyson Ring, ringworld, Stanford torus or Bishop Ring.

Physical description

At sufficiently large enough scales, rigid matter such as the typical silicate-ferrous composition of rocky planets behaves fluidly, and satisfies the condition for evaluating the mechanics of toroidal self-gravitating fluid bodies in context.[2] A rotating mass in the form of a torus allows an effective balance between the gravitational attraction and the force due to centrifugal acceleration, when the angular momentum is adequately large. Ring-shaped masses without a relatively massive central nuclei in equilibrium have been analyzed in the past by Henri Poincaré (1885),[3] Frank W. Dyson (1892), and Sophie Kowalewsky (1885), wherein a condition is allowable for a toroidal rotating mass to be stable with respect to a displacement leading to another toroid. Dyson (1893) investigated other types of distortions and found that the rotating toroidal mass is secularly stable against "fluted" and "twisted" displacements but can become unstable against beaded displacements in which the torus is thicker in some meridians but thinner in some others. In the simple model of parallel sections, beaded instability commences when the aspect ratio of major to minor radius exceeds 3.[4][5]

Wong (1974) found that toroidal fluid bodies are stable against axisymmetric perturbations for which the corresponding Maclaurin sequence is unstable, yet in the case of non-axisymmetric perturbation at any point on the sequence is unstable.[6] Prior to this, Chandrasekhar (1965, 1967), and Bardeen (1971),[7] had shown that a Maclaurin spheroid with an eccentricity is unstable against displacements leading to toroidal shapes and that this Newtonian instability is excited by the effects of general relativity. Eriguchi and Sugimoto (1981) improved on this result, and Ansorg, Kleinwachter & Meinel (2003) achieved near-machine accuracy, which allowed them to study bifurcation sequences in detail and correct erroneous results.[8]

While an integral expression for gravitational potential of an idealized homogeneous circular torus composed of infinitely thin rings is available,[9] more precise equations are required to describe the expected inhomogeneities in the mass-distribution per the differentiated composition of a toroidal planet. The rotational energy of a toroidal planet in uniform rotation is where is the angular momentum and the rigid-body moment of inertia about the central symmetry axis. Toroidal planets would experience a tidal force pulling matter in the inner part of toroid toward the opposite rim, consequently flattening the object across the -axis. Tectonic plates drifting hubward would undergo significant contraction, resulting in mountainous convolutions inside the planet's inner region, whereby the elevation of such mountains would be amplified via isostasy due to the reduced gravitational effect in that region.

Formation

Since the existence of toroidal planets is strictly hypothetical, no empirical basis for protoplanetary formation has been established. One homolog is a synestia, a loosely connected doughnut-shaped mass of vaporized rock, proposed by Simon J. Lock and Sarah T. Stewart-Mukhopadhyay to have been responsible for the isotopic similarity in composition, particularly the difference in volatiles, of the Earth-Moon system that occurred during the early-stage process of formation, according to the leading giant-impact hypothesis.[10] The computer modelling incorporated a smoothed particle hydrodynamics code for a series of overlapping constant-density spheroids to obtain the result of a transitional region with a corotating inner region connected to a disk-like outer region.

Occurrence

To date, no distinctly torus-shaped planet has ever been observed. Given how improbable their occurrence, it is extremely unlikely any will ever be observationally confirmed to exist even within our cosmological horizon; the corresponding search field being approximately Hubble volumes, or cubic light years.[11]

In fiction

The game My Singing Monsters takes place in a toroidal planet named simply The Monster World.

See also

Notes

  1. ^ Second Borel–Cantelli Lemma, If and the events are independent, then

References

  1. ^ Marcus Ansorg, Andreas Kleinwächter, Reinhard Meinel (February 2003). "Uniformly rotating axisymmetric fluid configurations bifurcating from highly flattened Maclaurin spheroids". Monthly Notices of the Royal Astronomical Society. 339 (2): 515–523. arXiv:astro-ph/0208267. Bibcode:2003MNRAS.339..515A. doi:10.1046/j.1365-8711.2003.06190.x. S2CID 18732418.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Nambo, E. C., Sarbach, O. (2020). "Static spherical perfect fluid stars with finite radius in general relativity: a review". Revista Mexicana de Física E. 18 (2 Jul-Dec). arXiv:2010.02859. doi:10.31349/RevMexFisE.18.020208. S2CID 222141572.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Poincare, H. (1885). ""_"". 100. Comptes Rendus de l'Académie des Sciences: 346. {{cite journal}}: Cite journal requires |journal= (help).
  4. ^ Dyson, F. W. (1893). "The Potential of an Anchor Ring". Philosophical Transactions of the Royal Society of London. 184 (1): 43–95. JSTOR 90617.
  5. ^ Wong, C. -Y. (1974). "Toroidal figures of equilibrium". The Astrophysical Journal. 190: 675. Bibcode:1974ApJ...190..675W. doi:10.1086/152926.
  6. ^ Fukushima T. Eriguchi Y. Sugimoto D. Bisnovatyi-Kogan G. S. (June 1980). "Concave Hamburger Equilibrium of Rotating Bodies". Symposium - International Astronomical Union. 93: 273. doi:10.1017/S0074180900074015.
  7. ^ Bardeen, James M. (August 1971). "A Reexamination of the Post-Newtonian Maclaurin Spheroids". The Astrophysical Journal. 167: 425. Bibcode:1971ApJ...167..425B. doi:10.1086/151040.
  8. ^ David Petroff, Stefan Horatschek (18 August 2008). "Uniformly rotating homogeneous and polytropic rings in Newtonian gravity". Monthly Notices of the Royal Astronomical Society. 389 (1): 156–172. arXiv:0802.0081. Bibcode:2008MNRAS.389..156P. doi:10.1111/j.1365-2966.2008.13540.x. S2CID 8467362.
  9. ^ Bannikova, E. Y. Vakulik, V. G. Shulga, V.M. (2010). "Gravitational potential of a homogeneous circular torus: A new approach". Monthly Notices of the Royal Astronomical Society. 411: 557–564. arXiv:1009.4324. doi:10.1111/j.1365-2966.2010.17700.x. S2CID 118453647.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Lock, Simon J.; Stewart, Sarah T. (2017). "The structure of terrestrial bodies: Impact heating, corotation limits and synestias". Journal of Geophysical Research: Planets. 122 (5): 950–982. arXiv:1705.07858. Bibcode:2017JGRE..122..950L. doi:10.1002/2016JE005239. S2CID 118959814.
  11. ^ "Hubble volume - Wolfram|Alpha". www.wolframalpha.com.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Paul GuldinPaul GuldinLahir(1577-06-12)12 Juni 1577Meninggal3 November 1643(1643-11-03) (umur 66)KebangsaanSwissNama lainHabakkuk GuldinPekerjaanJesuitastronomer Paul Guldin (Lahir: Saint Gallen, 12 Juni 1577. Meninggal: Graz, 3 Novermeber 16...

 

Tumhari SuluSutradaraSuresh TriveniProduserBhushan KumarTanuj GargKrishan KumarAtul KasbekarShanti Sivaram MainiDitulis olehSuresh TriveniVijay MauryaPemeranVidya BalanNeha DhupiaManav KaulAbhishek SharmaPenata musikLagu:Guru RandhawaRajat NagpalTanishk BagchiAmartya Bobo RahutLaxmikant–Pyarelal Santanu Ghatak Musik:Karan KulkarniSinematograferSaurabh GoswamiPenyuntingShivkumar PanickerPerusahaanproduksiT-SeriesEllipsis EntertainmentDistributorT-SeriesTanggal rilis 17 November 2017...

 

Mausoleum Attar dari Nishapurآرامگاه عطار نیشابوریMausoleum dari Attar dari NishapurInformasi umumStatusTerbuka untuk publikGaya arsitekturArsitektur PersiaKotaNishapurNegara IranRampungKekaisaran Timurid (atas perintah dari Ali-Shir Nava'i) Mausoleum Attar dari Nishapur (Persia: آرامگاه عطار نیشابوری ) terletak di kota Nishapur, sebelah timur laut negara Iran. Situs tersebut juga berdekatan dengan Mausoleum Omar Khayyam.[1] Mausoleoum in...

العلاقات البوروندية السنغافورية بوروندي سنغافورة   بوروندي   سنغافورة تعديل مصدري - تعديل   العلاقات البوروندية السنغافورية هي العلاقات الثنائية التي تجمع بين بوروندي وسنغافورة.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدول�...

 

Sporting event delegationTurkey at the2012 Summer OlympicsIOC codeTURNOCTurkish National Olympic CommitteeWebsiteolimpiyat.org.tr (in English and Turkish)in LondonCompetitors114 in 16 sportsFlag bearers Neslihan Demir Darnel (opening)[1] Servet Tazegül (closing)MedalsRanked 46th Gold 1 Silver 1 Bronze 1 Total 3 Summer Olympics appearances (overview)190819121920192419281932193619481952195619601964196819721976198019841988199219962000200420082012201620202024Other related appe...

 

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Club Atlético Douglas Haig – news · newspapers · books · scholar · JSTOR (October 2014) (Learn how and whe...

 

89th President of the Swiss Confederation Micheline Calmy-ReyPresident of SwitzerlandIn office1 January 2011 – 31 December 2011Vice PresidentEveline Widmer-SchlumpfPreceded byDoris LeuthardSucceeded byEveline Widmer-SchlumpfIn office1 January 2007 – 31 December 2007Vice PresidentPascal CouchepinPreceded byMoritz LeuenbergerSucceeded byPascal CouchepinVice President of SwitzerlandIn office1 November 2010 – 31 December 2010PresidentDoris LeuthardPreceded byMori...

 

الفلبينيون في مصرمناطق الوجود المميزةالبلد مصر اللغات التاغالوغية، الإنجليزية، العربيةالدين كاثوليكية، الإسلامتعديل - تعديل مصدري - تعديل ويكي بيانات يتكون الفلبينيون في مصر من العمال المهاجرين في مجموعة متنوعة من القطاعات، فضلا عن عدد أقل من الطلاب الدوليون.[1] يقد�...

National park in the Philippines Minalungao National ParkIUCN category V (protected landscape/seascape)Peñaranda River at the Minalungao National ParkShow map of Nueva EcijaShow map of LuzonShow map of PhilippinesLocationGeneral Tinio, Nueva Ecija, PhilippinesNearest cityGapan, Nueva Ecija, PhilippinesCoordinates15°17′55.3″N 121°07′19.6″E / 15.298694°N 121.122111°E / 15.298694; 121.122111Area2,018 hectares (4,990 acres)EstablishedJune 11, 1967Governin...

 

Diagram yang menggambarkan dualisme properti. Dualisme properti adalah pendekatan dalam filsafat budi yang meyakini bahwa walaupun alam semesta hanya terdiri dari satu substansi fisik, terdapat dua jenis properti yang berbeda, yaitu properti fisik dan budi. Dalam kata lain, menurut pendekatan ini properti budi (seperti kepercayana, keinginan, dan emosi) merupakan bagian dari substansi fisik (yaitu otak). Di sisi lain, dualisme substansi merupakan pandangan bahwa terdapat dua jenis substansi, ...

 

Olacaceae Olax imbricata Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Tracheophyta (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Eudikotil inti Ordo: Santalales Famili: OlacaceaeR.Br.[1] Genera Lihat teks Olacaceae adalah salah satu suku anggota tumbuhan berbunga. Menurut Sistem klasifikasi APG II suku ini dimasukkan ke dalam bangsa Santalales, klad dikotil sejati inti (core Eudikotil) namun tidak termasuk ke dalam dua kelompok besar, Rosidae dan aste...

Visual art related to writing Calligrapher redirects here. For the novel, see The Calligrapher. Further information: Handwriting and Script typeface This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: There are many grammatical and formatting errors, thus hampering the clarity and quality of the a...

 

دائرة مور(بالإنجليزية: Mohr's circle)‏ هي تمثيل بياني للأسطح المعرضة للإجهادات؛ استخدمها أول مرة كريستيان أوتو مور في العام 1892.[1] وتستخدم حاليا بوفرة في المجالات الهندسية المختلفة لحسابات الإجهادات، الانفعال، وعزوم المساحات. التطبيق توزع الإجهاد على مثلث، يستخدم لاستنتاج ...

 

Subculture defined by claims to authenticity and uniqueness Not to be confused with Hipster (1940s subculture) or Hippie. The examples and perspective in this article may not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (January 2023) (Learn how and when to remove this message) Ironic (or post-ironic) usage of vintage elements is popular in hipster fashion. Ironic moustaches and moustache ...

US Supreme Court justice from 1911 to 1916 Joseph Rucker LamarAssociate Justice of the Supreme Court of the United StatesIn officeJanuary 3, 1911 – January 2, 1916[1]Nominated byWilliam Howard TaftPreceded byWilliam MoodySucceeded byLouis BrandeisJustice of the Georgia Supreme CourtIn office1901–1905Member of the Georgia House of RepresentativesIn office1886–1889 Personal detailsBorn(1857-10-14)October 14, 1857Ruckersville, Georgia, U.S.DiedJanuary 2, 1916(1916-01-02) (...

 

16th-century seismic event in the North Pacific Ocean 1585 Aleutian Islands earthquakeThe epicenter of the earthquake is thought to have been in the eastern Aleutian Islands.Local date11 June 1585 (1585-06-11)Magnitude9.25 MwEpicenterAleutian subduction zoneTypeMegathrustAreas affectedHawaii, AlaskaSanriku, JapanTsunamiYesCasualtiesMany native people in Hawaii killed The 1585 Aleutian Islands earthquake is the presumed source of a tsunami along the Sanriku coast of Japan on 11 June ...

 

Proposed project site Dossier (11 10) The Bell Bay Pulp Mill, also known as the Tamar Valley Pulp Mill or Gunns Pulp Mill, was a proposed $2.3 billion[1] pulp mill in which the former Gunns Limited was planning to build in the Tamar Valley, near Launceston, Tasmania.[2][3][4] Gunns Limited went into voluntary administration in 2012,[5] and on 30 August 2017, the permits for the proposed building lapsed, signalling the end of the project. A Gunns s...

Statistics and Census ServiceChinese nameTraditional Chinese統計暨普查局Simplified Chinese统计暨普查局TranscriptionsStandard MandarinHanyu PinyinTǒngjì jì Pǔchá JúYue: CantoneseJyutpingtung2 gai3 kei3 pou2 caa4 guk6Portuguese namePortugueseDirecção dos Serviços de Estatística e Census The Statistics and Census Service (Portuguese: Direcção dos Serviços de Estatística e Census, DSEC; Chinese: 統計暨普查局) is the statistics agency of Macau. Its hea...

 

This article is about the calculus concept. For the statistical concept, see Fisher–Tippett–Gnedenko theorem. Continuous real function on a closed interval has a maximum and a minimum This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2012) (Learn how and when to remove this message) A continuous function f ( x ) {\displaystyle f(x)} on the closed inter...