Tetrachord

In music theory, a tetrachord (Greek: τετράχορδoν; Latin: tetrachordum) is a series of four notes separated by three intervals. In traditional music theory, a tetrachord always spanned the interval of a perfect fourth, a 4:3 frequency proportion (approx. 498 cents)—but in modern use it means any four-note segment of a scale or tone row, not necessarily related to a particular tuning system.

History

The name comes from tetra (from Greek—"four of something") and chord (from Greek chordon—"string" or "note"). In ancient Greek music theory, tetrachord signified a segment of the greater and lesser perfect systems bounded by immovable notes (Greek: ἑστῶτες); the notes between these were movable (Greek: κινούμενοι). It literally means four strings, originally in reference to harp-like instruments such as the lyre or the kithara, with the implicit understanding that the four strings produced adjacent (i.e., conjunct) notes.

Modern music theory uses the octave as the basic unit for determining tuning, where ancient Greeks used the tetrachord. Ancient Greek theorists recognized that the octave is a fundamental interval but saw it as built from two tetrachords and a whole tone.[1]

Ancient Greek music theory

Ancient Greek music theory distinguishes three genera (singular: genus) of tetrachords. These genera are characterized by the largest of the three intervals of the tetrachord:

Diatonic
A diatonic tetrachord has a characteristic interval that is less than or equal to half the total interval of the tetrachord (or approximately 249 cents). This characteristic interval is usually slightly smaller (approximately 200 cents), becoming a whole tone. Classically, the diatonic tetrachord consists of two intervals of a tone and one of a semitone, e.g. A–G–F–E.
Chromatic
A chromatic tetrachord has a characteristic interval that is greater than about half the total interval of the tetrachord, yet not as great as four-fifths of the interval (between about 249 and 398 cents). Classically, the characteristic interval is a minor third (approximately 300 cents), and the two smaller intervals are equal semitones, e.g. A–G–F–E.
Enharmonic
Two Greek tetrachords in the enharmonic genus, forming an enharmonic Dorian scale
An enharmonic tetrachord has a characteristic interval that is greater than about four-fifths the total tetrachord interval. Classically, the characteristic interval is a ditone or a major third,[2] and the two smaller intervals are quarter tones, e.g. A–Gdouble flat–Fhalf flat–E.

When the composite of the two smaller intervals is less than the remaining (incomposite) interval, the three-note group is called the pyknón (from pyknós, meaning "compressed"). This is the case for the chromatic and enharmonic tetrachords, but not the diatonic (meaning "stretched out") tetrachord.

Whatever the tuning of the tetrachord, its four degrees are named, in ascending order, hypate, parhypate, lichanos (or hypermese), and mese and, for the second tetrachord in the construction of the system, paramese, trite, paranete, and nete. The hypate and mese, and the paramese and nete are fixed, and a perfect fourth apart, while the position of the parhypate and lichanos, or trite and paranete, are movable.

As the three genera simply represent ranges of possible intervals within the tetrachord, various shades (chroai) with specific tunings were specified. Once the genus and shade of tetrachord are specified, their arrangement can produce three main types of scales, depending on which note of the tetrachord is taken as the first note of the scale. The tetrachords themselves remain independent of the scales that they produce, and were never named after these scales by Greek theorists.[3]

Dorian scale
The first note of the tetrachord is also the first note of the scale.
Diatonic: E–D–C–B | A–G–F–E
Chromatic: E–D–C–B | A–G–F–E
Enharmonic: E–Ddouble flat–Chalf flat–B │ A–Gdouble flat–Fhalf flat–E
Phrygian scale
The second note of the tetrachord (in descending order) is the first of the scale.
Diatonic: D–C–B | A–G–F–E | D
Chromatic: D–C–B | A–G–F–E | D
Enharmonic: Ddouble flat–Chalf flat–B | A–Gdouble flat–Fhalf flat–E | Ddouble flat
Lydian scale
The third note of the tetrachord (in descending order) is the first of the scale.
Diatonic: C–B | A–G–F–E | D–C
Chromatic: C–B | A–G–F–E | D–C
Enharmonic: Chalf flat–B | A–Gdouble flat–Fhalf flat–E | Ddouble flat–Chalf flat

In all cases, the extreme notes of the tetrachords, E – B, and A – E, remain fixed, while the notes in between are different depending on the genus.

Pythagorean tunings

Here are the traditional Pythagorean tunings of the diatonic and chromatic tetrachords:

Diatonic
hypate     parhypate           lichanos           mese
4/3 81/64 9/8 1/1
256/243 9/8 9/8
−498¢ −408¢ −204¢ 0¢
Chromatic
hypate     parhypate     lichanos               mese
4/3 81/64 32/27 1/1
256/243 2187/2048 32/27
−498¢ −408¢ −294¢ 0¢

Here is a representative Pythagorean tuning of the enharmonic genus attributed to Archytas:

Enharmonic
hypate parhypate lichanos                   mese
4/3 9/7 5/4 1/1
28/27 36/35 5/4
−498¢ −435¢ −386¢ 0¢

The number of strings on the classical lyre varied at different epochs, and possibly in different localities – four, seven and ten having been favorite numbers. Larger scales are constructed from conjunct or disjunct tetrachords. Conjunct tetrachords share a note, while disjunct tetrachords are separated by a disjunctive tone of 9/8 (a Pythagorean major second). Alternating conjunct and disjunct tetrachords form a scale that repeats in octaves (as in the familiar diatonic scale, created in such a manner from the diatonic genus), but this was not the only arrangement.

The Greeks analyzed genera using various terms, including diatonic, enharmonic, and chromatic. Scales are constructed from conjunct or disjunct tetrachords.

Didymos’ chromatic tetrachord 4:3 (6:5) 10:9 (25:24) 16:15 (16:15) 1:1
Eratosthenes’ chromatic tetrachord 4:3 (6:5) 10:9 (19:18) 20:19 (20:19) 1:1
Ptolemy’s soft chromatic 4:3 (6:5) 10:9 (15:14) 28:27 (28:27) 1:1
Ptolemy’s intense chromatic 4:3 (7:6) 8:7 (12:11) 22:21 (22:21) 1:1
Archytas’ enharmonic 4:3 (5:4) 9:7 (36:35) 28:27 (28:27) 1:1

This is a partial table of the superparticular divisions by Chalmers after Hofmann.[who?][4]

Variations

Romantic era

Descending tetrachord in the modern B Locrian (also known as the upper minor tetrachord): scale degree 8scale degree 7scale degree 6scale degree 5 (b–a–g–f). This tetrachord spans a tritone instead of a perfect fourth.
The Phrygian progression creates a descending tetrachord[5][unreliable source?] bassline: scale degree 8scale degree 7scale degree 6scale degree 5. Phrygian half cadence: i–v6–iv6–V in C minor (bassline: c–b–a–g)

Tetrachords based upon equal temperament tuning were used to explain common heptatonic scales. Given the following vocabulary of tetrachords (the digits give the number of semitones in consecutive intervals of the tetrachord, adding to five):

Tetrachord Halfstep String
Major 2 2 1
Minor 2 1 2
Harmonic 1 3 1
Upper Minor 1 2 2

the following scales could be derived by joining two tetrachords with a whole step (2) between:[6][7]

Component tetrachords Halfstep string Resulting scale
Major + major 2 2 1 : 2 : 2 2 1 Diatonic major
Minor + upper minor 2 1 2 : 2 : 1 2 2 Natural minor
Major + harmonic 2 2 1 : 2 : 1 3 1 Harmonic major
Minor + harmonic 2 1 2 : 2 : 1 3 1 Harmonic minor
Harmonic + harmonic 1 3 1 : 2 : 1 3 1 Double harmonic scale[8][9] or Gypsy major[10]
Major + upper minor 2 2 1 : 2 : 1 2 2 Melodic major
Minor + major 2 1 2 : 2 : 2 2 1 Melodic minor
Upper minor + harmonic 1 2 2 : 2 : 1 3 1 Neapolitan minor

All these scales are formed by two complete disjunct tetrachords: contrarily to Greek and Medieval theory, the tetrachords change here from scale to scale (i.e., the C major tetrachord would be C–D–E–F, the D major one D–E–F–G, the C minor one C–D–E–F, etc.). The 19th-century theorists of ancient Greek music believed that this had also been the case in Antiquity, and imagined that there had existed Dorian, Phrygian or Lydian tetrachords. This misconception was denounced in Otto Gombosi's thesis (1939).[11]

20th-century analysis

Theorists of the later 20th century often use the term "tetrachord" to describe any four-note set when analysing music of a variety of styles and historical periods.[12] The expression "chromatic tetrachord" may be used in two different senses: to describe the special case consisting of a four-note segment of the chromatic scale,[13] or, in a more historically oriented context, to refer to the six chromatic notes used to fill the interval of a perfect fourth, usually found in descending bass lines.[14] It may also be used to describes sets of fewer than four notes, when used in scale-like fashion to span the interval of a perfect fourth.[15]

Atonal usage

Allen Forte occasionally uses the term tetrachord to mean what he elsewhere calls a tetrad or simply a "4-element set" – a set of any four pitches or pitch classes.[16] In twelve-tone theory, the term may have the special sense of any consecutive four notes of a twelve-tone row.[17]

Non-Western scales

Tetrachords based upon equal-tempered tuning were also used to approximate common heptatonic scales in use in Indian, Hungarian, Arabian and Greek musics. Western theorists of the 19th and 20th centuries, convinced that any scale should consist of two tetrachords and a tone, described various combinations supposed to correspond to a variety of exotic scales. For instance, the following diatonic intervals of one, two or three semitones, always totaling five semitones, produce 36 combinations when joined by whole step:[18]

Lower tetrachords Upper tetrachords
3 1 1 3 1 1
2 2 1 2 2 1
1 3 1 1 3 1
2 1 2 2 1 2
1 2 2 1 2 2
1 1 3 1 1 3

Indian-specific tetrachord system

Tetrachords separated by a halfstep are said to also appear particularly in Indian music. In this case, the lower "tetrachord" totals six semitones (a tritone). The following elements produce 36 combinations when joined by halfstep.[18] These 36 combinations together with the 36 combinations described above produce the so-called "72 karnatic modes".[19]

Lower tetrachords Upper tetrachords
3 2 1 3 1 1
3 1 2 2 2 1
2 2 2 1 3 1
1 3 2 2 1 2
2 1 3 1 2 2
1 2 3 1 1 3

Persian

Persian music divides the interval of a fourth differently than the Greek. For example, Al-Farabi describes four genres of the division of the fourth:[20]

  • The first genre, corresponding to the Greek diatonic, is composed of a tone, a tone and a semitone, as G–A–B–C.
  • The second genre is composed of a tone, three quarter tones and three quarter tones, as G–A–Bhalf flat–C.
  • The third genre has a tone and a quarter, three quarter tones and a semitone, as G–Ahalf sharp–B–C.
  • The fourth genre, corresponding to the Greek chromatic, has a tone and a half, a semitone and a semitone, as G–A–B–C.

He continues with four other possible genres "dividing the tone in quarters, eighths, thirds, half thirds, quarter thirds, and combining them in diverse manners".[21] Later, he presents possible positions of the frets on the lute, producing ten intervals dividing the interval of a fourth between the strings:[22]

Ratio: 1/1 256/243 18/17 162/149 54/49 9/8 32/27 81/68 27/22 81/64 4/3
Note name: C C C Cthree quarter sharp Cthree quarter sharp D E E Ehalf flat E F
Cents: 0 90 99 145 168 204 294 303 355 408 498

If one considers that the interval of a fourth between the strings of the lute (Oud) corresponds to a tetrachord, and that there are two tetrachords and a major tone in an octave, this would create a 25-tone scale. A more inclusive description (where Ottoman, Persian and Arabic overlap), of the scale divisions is that of 24 quarter tones (see also Arabian maqam). It should be mentioned that Al-Farabi's, among other Islamic treatises, also contained additional division schemes as well as providing a gloss of the Greek system as Aristoxenian doctrines were often included.[23]

Compositional forms

The tetrachord, a fundamentally incomplete fragment, is the basis of two compositional forms constructed upon repetition of that fragment: the complaint and the litany.

The descending tetrachord from tonic to dominant, typically in minor (e.g. A–G–F–E in A minor), had been used since the Renaissance to denote a lamentation. Well-known cases include the ostinato bass of Dido's aria When I am laid in earth in Henry Purcell's Dido and Aeneas, the Crucifixus in Johann Sebastian Bach's Mass in B minor, BWV 232, or the Qui tollis in Mozart's Mass in C minor, KV 427, etc.[24] This tetrachord, known as lamento ("complaint", "lamentation"), has been used until today. A variant form, the full chromatic descent (e.g. A–G–G–F–F–E in A minor), has been known as Passus duriusculus in the Baroque Figurenlehre.[full citation needed]

There exists a short, free musical form of the Romantic Era, called complaint or complainte (Fr.) or lament.[25] It is typically a set of harmonic variations in homophonic texture, wherein the bass descends through some tetrachord, possibly that of the previous paragraph, but usually one suggesting a minor mode. This tetrachord, treated as a very short ground bass, is repeated again and again over the length of the composition.

Another musical form, of the same time period, is the litany or litanie (Fr.), or lytanie (OE spur).[26] It is also a set of harmonic variations in homophonic texture, but in contrast to the lament, here the tetrachordal fragment – ascending or descending and possibly reordered – is set in the upper voice in the manner of a chorale prelude. Because of the extreme brevity of the theme and number of repetitions required, and free of the binding of chord progression to tetrachord in the lament, the breadth of the harmonic excursion in litany is usually notable.

See also

References

  1. ^ Mathiesen, Thomas J. (2001). "Greece §I: Ancient". In Sadie, S.; Tyrrell, J. (eds.). The New Grove Dictionary of Music and Musicians (second ed.). London, UK: Macmillan. 6 Music Theory, (iii) Aristoxenian Tradition, (d) Scales.
  2. ^ Chalmers 1993, p. 8.
  3. ^ Chalmers 1993, p. 103.
  4. ^ Chalmers 1993, p. 11.
  5. ^ "Phrygian Progression", Classical Music Blog. Archived 2011-10-06 at the Wayback Machine
  6. ^ Marcel Dupré, Cours Complet d'Improvisation a l'Orgue, 2 vols., translated by John Fenstermaker. Paris: Alphonse Leduc, 1962, 2:35. ASIN: B0006CNH8E.
  7. ^ Joseph Schillinger, The Schillinger System of Musical Composition, 2 vols. (New York: Carl Fischer, 1941), 1:112–114. ISBN 978-0306775215.
  8. ^ Joshua Craig Podolsky, Advanced Lead Guitar Concepts (Pacific, Missouri: Mel Bay, 2010): 111. ISBN 978-0-7866-8236-2.
  9. ^ "Double harmonic scale and its modes". docs.solfege.org. Archived from the original on 2015-06-18. Retrieved 2015-04-12.
  10. ^ Jonathan Bellman, The "Style hongrois" in the Music of Western Europe (Boston: Northeastern University Press, 1993): 120. ISBN 1-55553-169-5.
  11. ^ Otto Johannes Gombosi, Tonarten und Stimmungen der Antiken Musik, Kopenhagen, Ejnar Munksgaard, 1939.
  12. ^ Benedict Taylor, "Modal Four-Note Pitch Collections in the Music of Dvořák's American Period", Music Theory Spectrum 32, no. 1 (Spring 2010): 44–59; Steven Block and Jack Douthett, "Vector Products and Intervallic Weighting", Journal of Music Theory 38, no. 1 (Spring 1994): 21–41; Ian Quinn, "Listening to Similarity Relations", Perspectives of New Music 39, no. 2 (Summer 2001): 108–158; Joseph N. Straus, "Stravinsky's 'Construction of Twelve Verticals': An Aspect of Harmony in the Serial Music", Music Theory Spectrum 21, no. 1 (Spring 1999): 43–73; Tuire Kuusi, "Subset-Class Relation, Common Pitches, and Common Interval Structure Guiding Estimations of Similarity", Music Perception 25, no. 1 (September 2007): 1–11; Joshua B. Mailman, "An Imagined Drama of Competitive Opposition in Carter's Scrivo in Vento, With Notes on Narrative, Symmetry, Quantitative Flux and Heraclitus", Music Analysis 28, no. 2/3 (July–October 2009): 373–422; John Harbison and Eleanor Cory, "Martin Boykan: String Quartet (1967): Two Views", Perspectives of New Music 11, no. 2 (Spring–Summer 1973): 204–209; Milton Babbitt, "Edgard Varèse: A Few Observations of His Music", Perspectives of New Music 4, no. 2 (Spring–Summer 1966): 14–22; Annie K. Yih, "Analysing Debussy: Tonality, Motivic Sets and the Referential Pitch-Class Specific Collection", Music Analysis 19, no. 2 (July 2000): 203–229; J. K. Randall, "Godfrey Winham's Composition for Orchestra", Perspectives of New Music 2, no. 1 (Autumn–Winter 1963): 102–113.
  13. ^ Brent Auerbach, "Tiered Polyphony and Its Determinative Role in the Piano Music of Johannes Brahms", Journal of Music Theory 52, no. 2 (Fall 2008): 273–320.
  14. ^ Robert Gauldin, "Beethoven's Interrupted Tetrachord and the Seventh Symphony", Intégral 5 (1991): 77–100.
  15. ^ Nors S. Josephson, "On Some Apparent Sketches for Sibelius's Eighth Symphony", Archiv für Musikwissenschaft 61, no. 1 (2004): 54–67.
  16. ^ Allen Forte (1973). The Structure of Atonal Music, pp. 1, 18, 68, 70, 73, 87, 88, 21, 119, 123, 124, 125, 138, 143, 171, 174, and 223. New Haven and London: Yale University Press. ISBN 0-300-01610-7 (cloth) ISBN 0-300-02120-8 (pbk). Allen Forte (1985). "Pitch-Class Set Analysis Today". Music Analysis 4, nos. 1 & 2 (March–July: Special Issue: King's College London Music Analysis Conference 1984): 29–58, citations on 48–51, 53.
  17. ^ Reynold Simpson, "New Sketches, Old Fragments, and Schoenberg's Third String Quartet, Op. 30", Theory and Practice 17, In Celebration of Arnold Schoenberg (1) (1992): 85–101.
  18. ^ a b Marcel Dupré, Cours Complet d'Improvisation a l'Orgue, 2 vols., translated by John Fenstermaker (Paris: Alphonse Leduc, 1962): 2:35. ASIN: B0006CNH8E.
  19. ^ Joanny Grosset, "Inde. Histoire de la musique depuis l'origine jusqu'à nos jours", Encyclopédie de la musique et Dictionnaire du Conservatoire, vol. 1, Paris, Delagrave, 1914, p. 325.
  20. ^ Al-Farabi 2001, pp. 56–57.
  21. ^ Al-Farabi 2001, p. 58.
  22. ^ Al-Farabi 2001, pp. 165–179; Liberty Manik, Das Arabische Tonsystem im Mittelalter (Leiden, E. J. Brill, 1969): 42; Habib Hassan Touma, The Music of the Arabs, translated by Laurie Schwartz. (Portland, Oregon: Amadeus Press, 1996): 19. ISBN 0-931340-88-8.
  23. ^ Chalmers 1993, p. 20.
  24. ^ Ellen Rosand, "The Descending Tetrachord: An Emblem of Lament", The Musical Quarterly 65, no. 3 (1979): 346–59.
  25. ^ Marcel Dupré, Cours complet d'improvisation a l'orgue: Exercices preparées, 2 vols., translated by John Fenstermaker. Paris: Alphonse Leduc, 1937): 1:14.
  26. ^ Marcel Dupré, (1962). Cours complet d'improvisation a l'orgue, 2 vols., translated by John Fenstermaker (Paris: Alphonse Leduc, 1962): 2:110.

Sources

Further reading

Read other articles:

Urban CopsPoster promosi Urban Cops Musim 2Nama alternatifCity PoliceHangul도시경찰 GenreAcara realitasPemeranJang HyukJo Jae-yoonKim Min-jaeLee Tae-hwanNegara asalKorea SelatanBahasa asliKoreaJmlh. musim2Jmlh. episode Musim 1: 10 Musim 2: 10 ProduksiLokasi produksiKorea SelatanDurasi90 menitRilisJaringan asliMBC Every 1Format gambarHDTV 1080iFormat audio2-channel StereoDolby DigitalRilis asli Musim 1: 14 Januari – 18 Maret 2019 (2019-03-18) Musim 2: 29 Juli 

American college football season 2012 Oklahoma Sooners footballBig 12 co-championCotton Bowl Classic, L 13–41 vs. Texas A&MConferenceBig 12 ConferenceRankingCoachesNo. 15APNo. 15Record10–3 (8–1 Big 12)Head coachBob Stoops (14th season)Co-offensive coordinatorJosh Heupel (2nd full as OC, 8th overall season)Co-offensive coordinatorJay Norvell (2nd full as OC, 5th overall season)Offensive schemeMultiple no-huddleDefensive coordinatorMike Stoop...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2018) الرياضية السعودية KSA SPORTS معلومات عامة النوع رياضية المدير غانم القحطاني تاريخ التأسيس 16 رجب 1423 هـ 24 سبتمب...

Атлантидафр. L'Atlantide Обкладинка українського видання 1991 рокуЖанр фентезі, пригодиФорма романТема АтлантидаАвтор П'єр БенуаМова французькаОпубліковано 1919Країна  ФранціяВидавництво Альбен МішельОпубліковано українською 1925, «Друкар»1991, «Мистецтво»Переклад В. Завадс�...

Rønbjerg Parochie van Denemarken Situering Bisdom Bisdom Viborg Gemeente Skive Coördinaten 56°31'45NB, 8°54'40OL Algemeen Inwoners (2004) 259 Leden Volkskerk (2004) 239 Overig Kerken Rønbjerg Kirke Proosdij Skive Provsti Pastoraat Estvad-Rønbjerg Foto's Portaal    Denemarken Rønbjerg is een parochie van de Deense Volkskerk in de Deense gemeente Skive. De parochie maakt deel uit van het bisdom Viborg en telt 239 kerkleden op een bevolking van 259 (2004). Tot 1970 was de paroch...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) يختلف الزي العسكري من قطاع لاخر ومن تخصص لاخر ويتم عن طريق الزي العسكري معرفة نوع القوات والتخصص ويتم معرف

Княжа криницяКраїна  УкраїнаРозташування Україна,Черкаська область, Черкаський районПлоща 0,01Засновано 1998Оператор Бобрицька сільська громадаПосилання  Княжа криниця у Вікісховищі Княжа криниця — гідрологічна пам'ятка природи місцевого значення. Об'єкт розта�...

Als White Supremacy [waɪt səˈprɛməsi] (englisch für „weiße Vorherrschaft“, „Überlegenheit der Weißen“) werden im englischsprachigen Raum rassistische Ideologien bezeichnet, welche auf der Annahme beruhen, dass Menschen mit europäischen Vorfahren – Weiße genannt – anderen Menschen prinzipiell überlegen seien und ihre privilegierte Stellung daher gewährleistet werden müsse. Der Ausdruck dient als Sammelbezeichnung für eine Vielzahl rassistisch ideologischer Systeme, d...

Lenzfrieder Höhenrücken Baumreihe auf dem Lenzfrieder Höhenrücken Höhe 765 m ü. NHN Lage Kempten (Allgäu), Bayern, Deutschland Gebirge Iller-Vorberge, Subalpines Jungmoränenland Koordinaten 47° 43′ 33″ N, 10° 20′ 58″ O47.72590110.349314765Koordinaten: 47° 43′ 33″ N, 10° 20′ 58″ O Lenzfrieder Höhenrücken (Bayern) Typ Höhenzug Gestein Molasse Besonderheiten Steinbruch, Wasserquellen Der Len...

MontpellierArrondissement de Montpellier Okręg Państwo  Francja Region  Oksytania Departament Hérault Siedziba Montpellier Powierzchnia 1005 km²[1] Populacja (2020)• liczba ludności 723 978[2] • gęstość 721 os./km² Położenie na mapie 43°36′N 3°53′E/43,600000 3,883333 Multimedia w Wikimedia Commons Okręg Montpellier (fr. Arrondissement de Montpellier) – okręg w południowo-zachodniej Francji, obejmujący miasto Montpellier i...

Political theory concerned with imagined socialist societies This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Utopian socialism – news · newspapers · books · scholar · JSTOR (April 2023) (Learn how and when to remove this template message) Phalanstère, a type of building designed by Charles Fourier Part of a...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Kiki Syarah – berita · surat kabar · buku · cendekiawan · JSTOR Kiki SyarahLahirRaden Riskie Syarah Fauziah Noor25 Januari 1993 (umur 30)Garut, IndonesiaNama lainKiki Syarah (Kisya)PekerjaanPen...

Winning Eleven beralih ke halaman ini. Untuk album Yovie & Nuno yang dirilis pada 2010, lihat Winning 11. eFootballAliranSepak bolaPengembangKonami (1995-2013)PES Productions (2014-2020)Konami Digital Entertainment (2020-sekarang)PenerbitKonamiPelantarAndroid, GameCube, iOS, PlayStation, PlayStation 2, PlayStation 3, PlayStation 4, PlayStation Portable, Game Boy Advance, Nintendo DS, Nintendo 3DS, Wii, Windows, Windows Phone 7, Xbox, Xbox 360, Xbox OneTerbitan pertamaJ.League Jikkyou Winn...

Eka Supria AtmajaBupati Bekasi ke-14Masa jabatan12 Juni 2019 – 11 Juli 2021 Pelaksana Tugas: 18 Oktober 2018 – 12 Juni 2019PresidenJoko WidodoGubernurRidwan KamilWakilAkhmad Marjuki (sejak 27 Oktober 2021)PendahuluNeneng Hassanah YasinPenggantiHerman Hanafi (Plh.) Dani Ramdan (Pj.) Akhmad Marjuki (Plt.) Wakil Bupati Bekasi ke-6Masa jabatan22 Mei 2017 – 18 Oktober 2018PresidenJoko WidodoGubernurAhmad HeryawanRidwan KamilBupatiNeneng Hassanah YasinPendahuluRohim ...

Species of butterfly Mafa sandman In Ngorongoro Crater, Tanzania Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Lepidoptera Family: Hesperiidae Genus: Spialia Species: S. mafa Binomial name Spialia mafa(Trimen, 1870)[1] Synonyms Pyrgus mafa Trimen, 1870 Hesperia oberthuri Aurivillius, 1925 Spialia aurivillii Shepard, 1935 Spialia mafa, the Mafa grizzled skipper or Mafa sandman, is a butterfly of the family Hesperiidae. It is...

Jean SimmonsOBESimmons pada tahun 1955LahirJean Merilyn Simmons(1929-01-31)31 Januari 1929Lower Holloway, London, InggrisMeninggal22 Januari 2010(2010-01-22) (umur 80)Santa Monica, California, Amerika SerikatKebangsaanBritaniaAmerikaAlmamaterSekolah Tari Aida FosterPekerjaanAktris, penyanyiTahun aktif1944–2010Suami/istriStewart Granger ​ ​(m. 1950; c. 1960)​ Richard Brooks ​ ​(m. 1960; c. 1980...

National highway in India National Highway 753AMap of the National Highway in redRoute informationAuxiliary route of NH 53Length205 km (127 mi)Major junctionsNorth endMalkapurSouth endAurangabad LocationCountryIndiaStatesMaharashtra Highway system Roads in India Expressways National State Asian ← NH 53→ NH 52 National Highway 753A, commonly referred to as NH 753A is a national highway in India.[1][2] It is a spur road of National Highway 53.[3&...

German Air Force Regiment FrieslandObjektschutzregiment der Luftwaffe FrieslandCoat of arms of the Objektschutzregiment LwActive1 July 2006–presentCountry GermanyBranch LuftwaffeTypeAir force ground forces and special forcesSize3 BattalionsGarrison/HQI. Bn - SchortensII. Bn - DiepholzIII. Bn - Diepholz/SchortensRegt HQ - SchortensMotto(s)Semper Communis(Latin: Always together)EngagementsWar in Afghanistan• ISAFCommandersCurrentcommanderColonel (Oberst) Marc VogtInsigniaBeret bad...

16th-century Coptic Christian saint Saint Salib (Arabic: قديس صليب; Coptic: ⲁⲃⲃⲁ ⲥⲁⲗⲓⲃ; Syriac: ܡܪ ܨܠܝܒ; Greek: Αγιος Πισταυρος) was a 16th-century Coptic or Arab Christian saint and martyr from the Mamluk era, who refused to convert to Islam while under trial, and got publicly executed under Al-Ashraf Qansuh al-Ghuri by being crucified, placed on a camel and paraded through Cairo, finally having been beheaded with a scimitar.[1][2]...

1950 Mexican / American film directed by Emilio Fernández The TorchDirected byEmilio FernándezWritten byEmilio Fernández (original screenplay)Íñigo de Martino (original screenplay)Bert Granet (adaptation)Produced byPaulette Goddard (associate producer)Bert Granet (producer)StarringSee belowCinematographyGabriel FigueroaEdited byCharles L. KimballMusic byAntonio Díaz CondeProductioncompanyBert Granet ProductionsDistributed byEagle-Lion FilmsRelease dates 2 June 1950 (1950-...