Tent map

Graph of tent map function
Example of iterating the initial condition x0 = 0.4 over the tent map with μ = 1.9.

In mathematics, the tent map with parameter μ is the real-valued function fμ defined by

the name being due to the tent-like shape of the graph of fμ. For the values of the parameter μ within 0 and 2, fμ maps the unit interval [0, 1] into itself, thus defining a discrete-time dynamical system on it (equivalently, a recurrence relation). In particular, iterating a point x0 in [0, 1] gives rise to a sequence :

where μ is a positive real constant. Choosing for instance the parameter μ = 2, the effect of the function fμ may be viewed as the result of the operation of folding the unit interval in two, then stretching the resulting interval [0, 1/2] to get again the interval [0, 1]. Iterating the procedure, any point x0 of the interval assumes new subsequent positions as described above, generating a sequence xn in [0, 1].

The case of the tent map is a non-linear transformation of both the bit shift map and the r = 4 case of the logistic map.

Behaviour

Orbits of unit-height tent map
Bifurcation diagram for the tent map. Higher density indicates increased probability of the x variable acquiring that value for the given value of the μ parameter.

The tent map with parameter μ = 2 and the logistic map with parameter r = 4 are topologically conjugate,[1] and thus the behaviours of the two maps are in this sense identical under iteration.

Depending on the value of μ, the tent map demonstrates a range of dynamical behaviour ranging from predictable to chaotic.

  • If μ is less than 1 the point x = 0 is an attractive fixed point of the system for all initial values of x i.e. the system will converge towards x = 0 from any initial value of x.
  • If μ is 1 all values of x less than or equal to 1/2 are fixed points of the system.
  • If μ is greater than 1 the system has two fixed points, one at 0, and the other at μ/(μ + 1). Both fixed points are unstable, i.e. a value of x close to either fixed point will move away from it, rather than towards it. For example, when μ is 1.5 there is a fixed point at x = 0.6 (since 1.5(1 − 0.6) = 0.6) but starting at x = 0.61 we get
  • If μ is between 1 and the square root of 2 the system maps a set of intervals between μ − μ2/2 and μ/2 to themselves. This set of intervals is the Julia set of the map – that is, it is the smallest invariant subset of the real line under this map. If μ is greater than the square root of 2, these intervals merge, and the Julia set is the whole interval from μ − μ2/2 to μ/2 (see bifurcation diagram).
  • If μ is between 1 and 2 the interval [μ − μ2/2, μ/2] contains both periodic and non-periodic points, although all of the orbits are unstable (i.e. nearby points move away from the orbits rather than towards them). Orbits with longer lengths appear as μ increases. For example:
  • If μ equals 2 the system maps the interval [0, 1] onto itself. There are now periodic points with every orbit length within this interval, as well as non-periodic points. The periodic points are dense in [0, 1], so the map has become chaotic. In fact, the dynamics will be non-periodic if and only if is irrational. This can be seen by noting what the map does when is expressed in binary notation: It shifts the binary point one place to the right; then, if what appears to the left of the binary point is a "one" it changes all ones to zeroes and vice versa (with the exception of the final bit "one" in the case of a finite binary expansion); starting from an irrational number, this process goes on forever without repeating itself. The invariant measure for x is the uniform density over the unit interval.[2] The autocorrelation function for a sufficiently long sequence {} will show zero autocorrelation at all non-zero lags.[3] Thus cannot be distinguished from white noise using the autocorrelation function. Note that the r = 4 case of the logistic map and the case of the tent map are homeomorphic to each other: Denoting the logistically evolving variable as , the homeomorphism is
  • If μ is greater than 2 the map's Julia set becomes disconnected, and breaks up into a Cantor set within the interval [0, 1]. The Julia set still contains an infinite number of both non-periodic and periodic points (including orbits for any orbit length) but almost every point within [0, 1] will now eventually diverge towards infinity. The canonical Cantor set (obtained by successively deleting middle thirds from subsets of the unit line) is the Julia set of the tent map for μ = 3.

Numerical errors

Time series of the Tent map for the parameter m = 2.0 which shows numerical error: "the plot of time series (plot of x variable with respect to number of iterations) stops fluctuating and no values are observed after n = 50". Parameter m = 2.0, initial point is random.

Magnifying the orbit diagram

Magnification near the tip shows more details.
  • A closer look at the orbit diagram shows that there are 4 separated regions at μ ≈ 1. For further magnification, 2 reference lines (red) are drawn from the tip to suitable x at certain μ (e.g., 1.10) as shown.
Further magnification shows 8 separated regions.
  • With distance measured from the corresponding reference lines, further detail appears in the upper and lower part of the map. (total 8 separated regions at some μ)

Asymmetric tent map

The asymmetric tent map is essentially a distorted, but still piecewise linear, version of the case of the tent map. It is defined by

for parameter . The case of the tent map is the present case of . A sequence {} will have the same autocorrelation function[3] as will data from the first-order autoregressive process with {} independently and identically distributed. Thus data from an asymmetric tent map cannot be distinguished, using the autocorrelation function, from data generated by a first-order autoregressive process.

Applications

The tent map has found applications in social cognitive optimization,[4] chaos in economics,[5][6] image encryption,[7] on risk and market sentiments for pricing,[8] etc.

See also

References

  1. ^ Conjugating the Tent and Logistic Maps, Jeffrey Rauch, University of Michigan
  2. ^ Collett, Pierre, and Eckmann, Jean-Pierre, Iterated Maps on the Interval as Dynamical Systems, Boston: Birkhauser, 1980.
  3. ^ a b Brock, W. A., "Distinguishing random and deterministic systems: Abridged version," Journal of Economic Theory 40, October 1986, 168-195.
  4. ^ Sun, Jiaze; Li, Yang (January 2019). "Social cognitive optimization with tent map for combined heat and power economic dispatch". International Transactions on Electrical Energy Systems. 29 (1): e2660. arXiv:1809.03616. doi:10.1002/etep.2660.
  5. ^ Brock, William A.; Dechert, W. Davis (1991-01-01), "Chapter 40 Non-linear dynamical systems: Instability and chaos in economics", Handbook of Mathematical Economics, vol. 4, Elsevier, pp. 2209–2235, retrieved 2023-09-29
  6. ^ "Nonlinearities in Economics". SpringerLink. doi:10.1007/978-3-030-70982-2#editorsandaffiliations. hdl:11581/480148.
  7. ^ Li, Chunhu; Luo, Guangchun; Qin, Ke; Li, Chunbao (2017-01-01). "An image encryption scheme based on chaotic tent map". Nonlinear Dynamics. 87 (1): 127–133. doi:10.1007/s11071-016-3030-8. ISSN 1573-269X.
  8. ^ Lampart, Marek; Lampartová, Alžběta; Orlando, Giuseppe (2023-09-01). "On risk and market sentiments driving financial share price dynamics". Nonlinear Dynamics. 111 (17): 16585–16604. doi:10.1007/s11071-023-08702-5. hdl:10084/152214. ISSN 1573-269X.

Read other articles:

Puente de Hierro Localización geográficaCruza Río GuadianaLocalización administrativaPaís España EspañaLocalidad MéridaBadajoz, ExtremaduraCaracterísticasTipo Puente de metálico de celosíasMaterial HierroUso MZARenfeLargo 605 m.HistoriaConstrucción 1883Inauguración 1883Ingeniero Eduardo PeraltWilliam Finch Featherstone Río abajo:Puente Lusitania Situación:Puente de Hierro Río arriba:Autovía E-308 [editar datos en Wikidata] El Puente de Hierro de Mérida es un a...

City in Texas, United StatesMelissa, TexasCityLocation of Melissa in Collin County, TexasCoordinates: 33°17′1″N 96°34′19″W / 33.28361°N 96.57194°W / 33.28361; -96.57194CountryUnited StatesStateTexasCountyCollinArea[1] • Total11.52 sq mi (29.83 km2) • Land11.45 sq mi (29.66 km2) • Water0.07 sq mi (0.17 km2)Elevation679 ft (207 m)Population (2020) •&...

Este artículo o sección necesita ser wikificado, por favor, edítalo para que cumpla con las convenciones de estilo.Este aviso fue puesto el 5 de marzo de 2021. Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 7 de febrero de 2021. Los disfraces de fastelavnEl motivo, la celebración del Fastelavn (en alemán Faschingsdienstago en ruso Масленицаen japonés パンケーキ火曜) el carnaval danés, una fiesta relac...

Vindblæs Parochie van Denemarken Situering Bisdom Bisdom Viborg Gemeente Vesthimmerlands Coördinaten 56°55'43,000NB, 9°18'59,000OL Algemeen Inwoners (2004) 479 Leden Volkskerk (2004) 436 Overig Kerken Vindblæs Kirke Proosdij Vesthimmerlands Provsti Pastoraat Vilsted-Vindblæs Foto's Portaal    Denemarken Vindblæs is een parochie van de Deense Volkskerk in de Deense gemeente Vesthimmerlands. De parochie maakt deel uit van het bisdom Viborg en telt 436 kerkleden op een bevolking...

يو-49   الجنسية  ألمانيا النازية الشركة الصانعة فريدريش كروب  المالك  كريغسمارينه المشغل كريغسمارينه  المشغلون الحاليون وسيط property غير متوفر. المشغلون السابقون وسيط property غير متوفر. التكلفة وسيط property غير متوفر. منظومة التعاريف الاَلية للسفينة وسيط property غير متوفر.

Aschach an der Steyr Wappen Österreichkarte Aschach an der Steyr (Österreich) Basisdaten Staat: Österreich Bundesland: Oberösterreich Politischer Bezirk: Steyr-Land Kfz-Kennzeichen: SE Fläche: 21,92 km² Koordinaten: 48° 1′ N, 14° 20′ O48.01361111111114.333611111111435Koordinaten: 48° 0′ 49″ N, 14° 20′ 1″ O Höhe: 435 m ü. A. Einwohner: 2.265 (1. Jän. 2023) Bevölkerungsdichte: 103 Einw. pro km²...

التهاب الجلد الإشعاعي معلومات عامة الاختصاص طب الجلد  من أنواع حرق،  والتهاب الجلد  الأسباب الأسباب تعرض للإشعاع  تعديل مصدري - تعديل   حرق إشعاعي: بقع حمراء كبيرة في  الجلد على الظهر والذراع  جراء التعرض للكشف الفلوري مدة طويلة. تشوه اليد يرجع إلى حرق الأ

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: It's The Dubliners – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) 1969 compilation album by The DublinersIt's The DublinersCompilation album by The DublinersReleased1969GenreIrish folkLabelHallmarkThe Dubline...

Sri Lanka's Lasith Malinga is the only cricketer to have taken three ODI hat-tricks. A hat-trick in cricket is when a bowler takes three wickets on consecutive deliveries, dismissing three different batsmen. It is a relatively rare event in One Day International (ODI) cricket with only 50 occurrences in 4546 matches since the first ODI match between Australia and England on 5 January 1971. The first ODI hat-trick was taken by Pakistan's Jalal-ud-Din against Australia in Hyderabad, Sindh, in S...

Representative in Quebec of the Canadian monarch This article is about the representative of the monarch in Quebec. For the political advisor to a federal party leader on Quebec issues, see Quebec lieutenant. Lieutenant Governor of QuebecLieutenant-gouverneur du QuébecCoat of arms of QuebecStandard of the lieutenant governorIncumbentJ. Michel Doyonsince September 24, 2015Office of the Lieutenant Governor of QuebecStyleHis Honour the HonourableAppointerGovernor General of Canada on the a...

EK voetbal kwalificatie 1996 Landen van de UEFA Toernooi-informatie Datum 20 april 1994 – 13 december 1995 Teams 47 (van 1 confederatie) Toernooistatistieken Wedstrijden 231 Doelpunten 680  (2,94 per wedstrijd) Portaal    Voetbal Deze pagina beschrijft de kwalificatie voor het Europees kampioenschap voetbal 1996. De kwalificatie begon op op 20 april 1994 met een wedstrijd tussen Noord-Ierland en Liechtenstein. Van de acht nummers 2 uit de verschillende kwalificatiegroepe...

United States historic placeDivision Street BridgeU.S. National Register of Historic Places Division Street Bridge in 2008; old I-95 Pawtucket River Bridge noted in the rearShow map of Rhode IslandShow map of the United StatesLocationPawtucket, Rhode Island, USACoordinates41°52′20″N 71°23′6″W / 41.87222°N 71.38500°W / 41.87222; -71.38500Built1876ArchitectCushing & Co., Horace FosterMPSPawtucket MRANRHP reference No.83003810 [1]Added to...

2001 single by Alan Jackson It's Alright to Be a RedneckSingle by Alan Jacksonfrom the album When Somebody Loves You B-sideA Love Like ThatReleasedNovember 5, 2001GenreCountryLength2:44LabelArista Nashville 69102Songwriter(s)Bill KennerPat McLaughlinProducer(s)Keith StegallAlan Jackson singles chronology Where I Come From (2001) It's Alright to Be a Redneck (2001) Where Were You (When the World Stopped Turning) (2001) It's Alright to Be a Redneck is a song written by Bill Kenner and Pat McLau...

American architect Araldo CossuttaAraldo Cossutta in Chicago in 2010. The building is part of the University Gardens Apartments.BornAraldo Alfred Cossutta(1925-01-11)January 11, 1925Krk, Kingdom of Serbs, Croats and SlovenesDiedFebruary 24, 2017(2017-02-24) (aged 92)New York, New York, United StatesNationalityAmerican (naturalized 1951)Alma materUniversity of Belgrade 1946École des Beaux-Arts 1951Harvard University 1952OccupationArchitectPracticeMichael Hare & Assoc. 1952–195...

2012 single by Flavour N'abania featuring Tiwa SavageOyiSingle by Flavour N'abania featuring Tiwa Savagefrom the album Uplifted ReleasedFebruary 18, 2012GenreR&B , highlifeLength3:20Label2nite EntertainmentSongwriter(s) Flavour N'abania Tiwa Savage Flavour N'abania singles chronology Odiro Easy (2011) Oyi (2012) Kwarikwa (Remix) (2012) Music videoOyi Remix on YouTube Oyi (Remix) is a song by Nigerian singer Flavour N'abania. It features vocals from Nigerian singer Tiwa Savage. The son...

Public secondary charter school in Chicago, Illinois, United StatesRauner College PrepAddress1337 W. Ohio StreetChicago, Illinois 60642United StatesInformationSchool typePublic Secondary CharterOpened2006PrincipalBrendan BedellGrades9–12GenderCoedEnrollment621 (2017-2018)Campus typeUrbanColor(s)  navy  orangeWebsiteRauner College Prep Rauner College Prep is a public four-year charter high school located in the West Town in Chicago, Illinois. It is a part of the Noble Network of Ch...

Type of motorcycle Honda WinnerHonda RSX(Malaysia)ManufacturerHondaAlso calledHonda Supra GTR(Indonesia) Honda RSX (Malaysia)[1]Honda RS150R/RS-X (Malaysia)[2]Production2016–presentClassUnderbone[3]Engine149.16 cc (9.1 cu in) liquid-cooled 4-stroke 4-valve DOHC singleBore / stroke57.3 mm × 57.8 mm (2.26 in × 2.28 in)Compression ratio11.3:1Top speed146 km/h (91 mph)[4]Power15 kW (20.1 hp; 20.4&...

Artikel ini bukan mengenai Stasiun Meester Cornelis milik Staatspoorwegen yang kini menjadi Stasiun Jatinegara.Stasiun Meester Cornelis Meester Cornelis Tampak depan Stasiun Meester Cornelis NISLokasiJalan Bukit DuriBukit Duri, Tebet, Jakarta Selatan, DKI Jakarta 12840IndonesiaOperator Nederlandsch-Indische Spoorweg Maatschappij (1872–1913) Staatsspoorwegen (1913–1918) Informasi lainKode stasiun[1]SejarahDibuka16 Juni 1872Ditutup1918Lokasi pada petaSunting kotak info • L...

For other political parties with the same name, see Revival Party and Revival Party (Moldova). Political party in Ukraine Revival ВідродженняLeaderVitaliy Khomutynnik[1]FounderHeorhiy KirpaFounded15 June 2004 (2004-06-15) (Revival), 27 February 2014 (2014-02-27) (Economic Development), 5 June 2015 (2015-06-05) (merger)Merger ofParty of RegionsSucceeded byFor the FutureKernes Bloc — Successful KharkivIdeologyEconom...

American bluegrass band For other uses, see Water Tower (disambiguation). Water TowerBackground informationOriginPortland, OregonGenresBluegrass, old-time, punk rockYears active2005-presentLabelsDutch Records, independentSpinoff ofThe Water Tower Bucket Boys, Water Tower String BandMembers Kenny Feinstein Tommy Drinkard Joe Juice Berglund Jesse Blue Eads Taylor Estes Walter Spencer Korey Simeone Peter Daggatt Harry Selick Pat Norris Past membersJosh RabieWebsitewatertowerband.com Water Tower,...