Stable manifold

In mathematics, and in particular the study of dynamical systems, the idea of stable and unstable sets or stable and unstable manifolds give a formal mathematical definition to the general notions embodied in the idea of an attractor or repellor. In the case of hyperbolic dynamics, the corresponding notion is that of the hyperbolic set.

Example hyperbolic flow, illustrating stable and unstable manifolds. The vector field equation is . The stable manifold is the x-axis, and the unstable manifold is the other asymptotic curve crossing the x-axis.

Physical example

The gravitational tidal forces acting on the rings of Saturn provide an easy-to-visualize physical example. The tidal forces flatten the ring into the equatorial plane, even as they stretch it out in the radial direction. Imagining the rings to be sand or gravel particles ("dust") in orbit around Saturn, the tidal forces are such that any perturbations that push particles above or below the equatorial plane results in that particle feeling a restoring force, pushing it back into the plane. Particles effectively oscillate in a harmonic well, damped by collisions. The stable direction is perpendicular to the ring. The unstable direction is along any radius, where forces stretch and pull particles apart. Two particles that start very near each other in phase space will experience radial forces causing them to diverge, radially. These forces have a positive Lyapunov exponent; the trajectories lie on a hyperbolic manifold, and the movement of particles is essentially chaotic, wandering through the rings. The center manifold is tangential to the rings, with particles experiencing neither compression nor stretching. This allows second-order gravitational forces to dominate, and so particles can be entrained by moons or moonlets in the rings, phase locking to them. The gravitational forces of the moons effectively provide a regularly repeating small kick, each time around the orbit, akin to a kicked rotor, such as found in a phase-locked loop.

The discrete-time motion of particles in the ring can be approximated by the Poincaré map. The map effectively provides the transfer matrix of the system. The eigenvector associated with the largest eigenvalue of the matrix is the Frobenius–Perron eigenvector, which is also the invariant measure, i.e the actual density of the particles in the ring. All other eigenvectors of the transfer matrix have smaller eigenvalues, and correspond to decaying modes.

Definition

The following provides a definition for the case of a system that is either an iterated function or has discrete-time dynamics. Similar notions apply for systems whose time evolution is given by a flow.

Let be a topological space, and a homeomorphism. If is a fixed point for , the stable set of is defined by

and the unstable set of is defined by

Here, denotes the inverse of the function , i.e. , where is the identity map on .

If is a periodic point of least period , then it is a fixed point of , and the stable and unstable sets of are defined by

and

Given a neighborhood of , the local stable and unstable sets of are defined by

and

If is metrizable, we can define the stable and unstable sets for any point by

and

where is a metric for . This definition clearly coincides with the previous one when is a periodic point.

Suppose now that is a compact smooth manifold, and is a diffeomorphism, . If is a hyperbolic periodic point, the stable manifold theorem assures that for some neighborhood of , the local stable and unstable sets are embedded disks, whose tangent spaces at are and (the stable and unstable spaces of ), respectively; moreover, they vary continuously (in a certain sense) in a neighborhood of in the topology of (the space of all diffeomorphisms from to itself). Finally, the stable and unstable sets are injectively immersed disks. This is why they are commonly called stable and unstable manifolds. This result is also valid for nonperiodic points, as long as they lie in some hyperbolic set (stable manifold theorem for hyperbolic sets).

Remark

If is a (finite-dimensional) vector space and an isomorphism, its stable and unstable sets are called stable space and unstable space, respectively.

See also

References

  • Abraham, Ralph; Marsden, Jerrold E. (1978). Foundations of Mechanics. Reading Mass.: Benjamin/Cummings. ISBN 0-8053-0102-X.
  • Irwin, Michael C. (2001). "Stable Manifolds". Smooth Dynamical Systems. World Scientific. pp. 143–160. ISBN 981-02-4599-8.
  • Sritharan, S. S. (1990). Invariant Manifold Theory for Hydrodynamic Transition. New York: John Wiley & Sons. ISBN 0-582-06781-2.

This article incorporates material from Stable manifold on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Read other articles:

Léon BrunschvicgInformación personalNacimiento 10 de noviembre de 1869 París (Sena, Francia) Fallecimiento 18 de enero de 1944 (74 años)Aix-les-Bains (Francia) Nacionalidad FrancesaFamiliaCónyuge Cécile Brunschvicg EducaciónEducado en Liceo CondorcetEscuela Normal Superior de París Alumno de Émile Boutroux Información profesionalOcupación Filósofo, historiador, escritor y profesor universitario Empleador Universidad de París Estudiantes doctorales Gaston Bachelard, Raymond Aron y...

Qāri' (em árabe: قَارِئ, plural قُرَّأ qurrā) ou leitor é uma pessoa que lê o Qur'an قرآن‎ com as próprias regras de retórica. (tajwīd) تجوید‎. [1] É muito comum nos países árabes. Referências ↑ Abdul Salam Zaeef, ʻAbd al-Salām Z̤aʻīf, Alex Strick van Linschoten, Felix Kuehn (2010). My life with the Taliban (em inglês). [S.l.]: Columbia University Press. p. 303. ISBN 978-0-231-70148-8. Consultado em 27 de setembro de 2011...

Dušan Basta Datos personalesNacimiento Belgrado, Serbia18 de agosto de 1984 (39 años)Nacionalidad(es) SerbiaAltura 1.84 metrosCarrera deportivaDeporte FútbolClub profesionalDebut deportivo 2002(Estrella Roja)Posición Lateral derechoSelección nacionalSelección SRB SerbiaPart. (goles) 18 (2)[editar datos en Wikidata] Dušan Basta (en serbio: Душан Баста) (Belgrado, Yugoslavia, 18 de agosto de 1984) es un exfutbolista serbio que se desempeñaba como ...

ТЕС Фарша 1, 2 12°08′07″ пн. ш. 14°59′46″ сх. д. / 12.135305555583776993° пн. ш. 14.99611111113877726° сх. д. / 12.135305555583776993; 14.99611111113877726Координати: 12°08′07″ пн. ш. 14°59′46″ сх. д. / 12.135305555583776993° пн. ш. 14.99611111113877726° сх. д. / 12.135305555583776993; 14.9961111111387...

Ця стаття є частиною Проєкту:Населені пункти України (рівень: невідомий) Портал «Україна»Мета проєкту — покращувати усі статті, присвячені населеним пунктам та адміністративно-територіальним одиницям України. Ви можете покращити цю статтю, відредагувавши її, а на стор�...

1979 film directed by Eric Till An American Christmas CarolBlu-ray Disc coverGenreDramaFantasyBased onA Christmas Carolby Charles DickensScreenplay byJerome CoopersmithDirected byEric TillStarringHenry WinklerDorian HarewoodSusan HoganCec LinderR.H. ThomsonDavid WayneMichael WincottWilliam BermenderBrett Matthew DavidsonMusic byHagood HardyCountry of originUnited StatesOriginal languageEnglishProductionExecutive producersEdgar J. ScherickGary SmithProducersStanley ChaseJon SlanProduction loca...

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

Ini adalah nama Maluku (Ambon), marganya adalah Mailoa Albertina Fransisca MailoaLahirAlbertina Fransisca Mailoa24 Oktober 1984 (umur 39)Makassar, Sulawesi Selatan, IndonesiaPekerjaanPeragawati, Ratu KecantikanPemenang kontes kecantikanGelarIndonesia World Miss University 2007,Putri Pariwisata Indonesia 2008Warna rambutHitamWarna mataHitamKompetisiutamaMiss Indonesia Tourism 2007(Indonesia World Miss University 2007)Miss Indonesia 2006(10 Besar)Putri Pariwisata Indonesia 2008(Pemenang)Mi...

Berikut adalah daftar munisipalitas di provinsi Valencia, di wilayah otonomi Negeri Valencia Spanyol 266 munisipalitas di Provinsi Valencia. Nama Populasi (2002) Ademús 1.183 Ador 1.398 Agullent 2.334 Aielo de Malferit 4.502 Aielo de Rugat 202 Alaquàs 30.104 Albaida 6.273 Albal 14.505 Albalat de la Ribera 3.321 Albalat dels Sorells 3.624 Albalat dels Tarongers 864 Alberic 10.234 Alboraig 1.003 Alboraia 21.263 Albuixech 3.529 Alcàntera de Xúquer 1.384 Alcàsser 8.505 Les Alcubles 795 L'Alc...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2023) كارمن كاسكو دي لارا كاسترو معلومات شخصية اسم الولادة (بالإسبانية: Carmen Elida de Jesús Casco Miranda)‏  الميلاد 17 يونيو 1918  كونسيبسيون  الوفاة 8 مايو 1993 (74 سنة)   أسو...

Odznaka tytułu honorowego„Zasłużony Hutnik Polskiej Rzeczypospolitej Ludowej” Awers odznaki Ustanowiono 9 listopada 1955 Wycofano 23 grudnia 1992 Dewiza ZASŁUŻONY HUTNIK PRL Wielkość ∅ 43 mm Kruszec metal złocony i srebrzony Wydano ponad 1,5 tys. Poniżej Medal 10-lecia Polski Ludowej Powiązane order chlebowy Odznaka tytułu honorowego „Zasłużony Hutnik Polskiej Rzeczypospolitej Ludowej” – jedna z piętnastu odznak tytułów honorowych przyznawanych w PRL, ustanowiona 9...

Group of muscles Infrahyoid musclesMuscles of the neck seen from the front. The infrahyoid muscles are coloured in violet.DetailsNerveAnsa cervicalis (except thyrohyoid muscle)ActionsDepress the hyoid boneIdentifiersLatinMusculi infrahyoideiTA98A04.2.04.001TA22167FMA71298Anatomical terms of muscle[edit on Wikidata] The infrahyoid muscles, or strap muscles, are a group of four pairs of muscles in the anterior (frontal) part of the neck.[1] The four infrahyoid muscles are the sterno...

溴化十六烷基三甲铵 IUPAC名hexadecyl-trimethyl-ammonium bromide 识别 CAS号 57-09-0  Y PubChem 5974 ChemSpider 5754 SMILES   CCCCCCCCCCCCCCCC[N+](C)(C)C.[Br-] InChI   1/C19H42N.BrH/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(2,3)4;/h5-19H2,1-4H3;1H/q+1;/p-1 InChIKey LZZYPRNAOMGNLH-REWHXWOFAU ChEBI 3567 KEGG D03454 ATC代码 D08AJ02, R02AA17 性质 化学式 C19H42BrN 摩尔质量 364.45 g/mol g·mol⁻¹ 外观 白色粉末 熔点 248–251 °C (deco...

Sebuah distribusi tipikal huruf dalam teks Bahasa Inggris. Sandi yang lemah tidak cukup menutupi distribusi, dan ini dapat dieksploitasi oleh seorang analis kriptografi untuk membaca pesan. Dalam analisis kriptografi, analisis frekuensi (juga dikenal sebagai menghitung huruf) merupakan studi dari frekuensi huruf atau kelompok huruf dalam teks tersandi. Metode ini digunakan untuk membantu memecahkan sandi klasik. Analisis frekuensi berdasarkan fakta bahwa, dalam bentangan bahasa tulisan terten...

Dialect of Neapolitan Southern Italian dialects (Southern Latian dialect: IV a) The Southern Latian dialect (Italian: laziale meridionale[1]) is a Southern Italian dialect widespread in the southernmost areas of Lazio, in particular south of the city of Frosinone and starting from the cities of Formia and Gaeta along the coast.[2] History Although in Roman times the area was part of Latium (Latium adiectum),[3] the region, starting from the Lombard period and therefore...

Indian drama television series Pushpa ImpossibleGenreDramaCreated byJamnadas MajethiaWritten by Aatish Kapadia Bhavna Vyas Screenplay by Bhavna Vyas Amit Aaryan Directed byPradeep Yadav, Nitin PatilCreative directorIndrajit MukherjeeStarring Karuna Pandey Vaidya Naveen Pandita Darshan Gurjar Deshna Dugad Country of originIndiaOriginal languageHindiNo. of seasons1No. of episodes467ProductionProducerJamnadas MajethiaRunning time22-26 minutesProduction companyHats Off ProductionOriginal releaseN...

Takayama 高山市KotaPemandangan kota dari Tenbou Park BenderaLokasi Takayama di Prefektur GifuNegaraJepangWilayahChūbuPrefekturPrefektur GifuPemerintahan • Wali KotaMichihiro Kunishima[1]Luas • Total2.177,67 km2 (84,080 sq mi)Populasi (Juli 2011[2]) • Total92.369 • Kepadatan0,00.042/km2 (0,0.011/sq mi)Lambang • PohonYew Jepang[3] • BungaRhododendron reticulatum[3]...

Sofiane Feghouli Feghouli con la nazionale algerina nel 2014 Nazionalità  Francia Algeria (dal 2011) Altezza 177 cm Peso 75 kg Calcio Ruolo Centrocampista, ala Squadra  Fatih Karagümrük Carriera Giovanili 1998-2003 Red Star2003-2004 Paris FC2004-2007 Grenoble Squadre di club1 2007-2010 Grenoble60 (3)2010-2011 Valencia3 (0)2011→  Almería9 (2)2011-2016 Valencia143 (20)2016-2017 West Ham Utd21 (3)2017-2022 Galatasaray126 (25)2023-...

Baroque palace in Berlin, Germany Not to be confused with Charlottenborg Palace in Copenhagen. Charlottenburg PalaceSchloss CharlottenburgFront view of the Charlottenburg PalaceLocation within BerlinShow map of BerlinSchloss Charlottenburg (Germany)Show map of GermanyGeneral informationArchitectural styleBaroque, RococoLocationBerlin, GermanyCoordinates52°31′15″N 13°17′45″E / 52.5209°N 13.2957°E / 52.5209; 13.2957Construction started1695Completed1713Design ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Rock Follies – news · newspapers · books · scholar · JSTOR (August 2023) (Learn how and when to remove this template message) British TV series or programme Rock FolliesAlso known asRock Follies of '77GenreMusical dramaWritten byHoward SchumanDirected by B...