Orbit (dynamics)

In mathematics, specifically in the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. It can be understood as the subset of phase space covered by the trajectory of the dynamical system under a particular set of initial conditions, as the system evolves. As a phase space trajectory is uniquely determined for any given set of phase space coordinates, it is not possible for different orbits to intersect in phase space, therefore the set of all orbits of a dynamical system is a partition of the phase space. Understanding the properties of orbits by using topological methods is one of the objectives of the modern theory of dynamical systems.

For discrete-time dynamical systems, the orbits are sequences; for real dynamical systems, the orbits are curves; and for holomorphic dynamical systems, the orbits are Riemann surfaces.

Definition

Diagram showing the periodic orbit of a mass-spring system in simple harmonic motion. (Here the velocity and position axes have been reversed from the standard convention in order to align the two diagrams)

Given a dynamical system (T, M, Φ) with T a group, M a set and Φ the evolution function

where with

we define

then the set

is called the orbit through x. An orbit which consists of a single point is called constant orbit. A non-constant orbit is called closed or periodic if there exists a in such that

.

Real dynamical system

Given a real dynamical system (R, M, Φ), I(x) is an open interval in the real numbers, that is . For any x in M

is called positive semi-orbit through x and

is called negative semi-orbit through x.

Discrete time dynamical system

For a discrete time dynamical system with a time-invariant evolution function :

The forward orbit of x is the set :

If the function is invertible, the backward orbit of x is the set :

and orbit of x is the set :

where :

  • is the evolution function
  • set is the dynamical space,
  • is number of iteration, which is natural number and
  • is initial state of system and

General dynamical system

For a general dynamical system, especially in homogeneous dynamics, when one has a "nice" group acting on a probability space in a measure-preserving way, an orbit will be called periodic (or equivalently, closed) if the stabilizer is a lattice inside .

In addition, a related term is a bounded orbit, when the set is pre-compact inside .

The classification of orbits can lead to interesting questions with relations to other mathematical areas, for example the Oppenheim conjecture (proved by Margulis) and the Littlewood conjecture (partially proved by Lindenstrauss) are dealing with the question whether every bounded orbit of some natural action on the homogeneous space is indeed periodic one, this observation is due to Raghunathan and in different language due to Cassels and Swinnerton-Dyer . Such questions are intimately related to deep measure-classification theorems.

Notes

It is often the case that the evolution function can be understood to compose the elements of a group, in which case the group-theoretic orbits of the group action are the same thing as the dynamical orbits.

Examples

Stability of orbits

A basic classification of orbits is

  • constant orbits or fixed points
  • periodic orbits
  • non-constant and non-periodic orbits

An orbit can fail to be closed in two ways. It could be an asymptotically periodic orbit if it converges to a periodic orbit. Such orbits are not closed because they never truly repeat, but they become arbitrarily close to a repeating orbit. An orbit can also be chaotic. These orbits come arbitrarily close to the initial point, but fail to ever converge to a periodic orbit. They exhibit sensitive dependence on initial conditions, meaning that small differences in the initial value will cause large differences in future points of the orbit.

There are other properties of orbits that allow for different classifications. An orbit can be hyperbolic if nearby points approach or diverge from the orbit exponentially fast.

See also

References

  • Hale, Jack K.; Koçak, Hüseyin (1991). "Periodic Orbits". Dynamics and Bifurcations. New York: Springer. pp. 365–388. ISBN 0-387-97141-6.
  • Katok, Anatole; Hasselblatt, Boris (1996). Introduction to the modern theory of dynamical systems. Cambridge. ISBN 0-521-57557-5.
  • Perko, Lawrence (2001). "Periodic Orbits, Limit Cycles and Separatrix Cycles". Differential Equations and Dynamical Systems (Third ed.). New York: Springer. pp. 202–211. ISBN 0-387-95116-4.

Read other articles:

Fototerapi pada bayi yang baru lahir Fototerapi atau terapi cahaya adalah bentuk pengobatan untuk kulit dengan menggunakan panjang gelombang cahaya buatan dari ultraviolet (cahaya biru), bagian dari spektrum matahari.[1] Dengan cara ini, cahaya dari panjang gelombang tertentu dapat disampaikan dengan intensitas yang lebih tinggi.[1] Fototerapi pertama kali digunakan dalam pengobatan psoriasis, eksem (eksema), vitiligo (sel-sel pigmen yang rusak sehingga menimbulkan bercak puti...

 

 

الدوري الأوروبي لكرة السلة 2017-2018   تفاصيل الموسم الدوري الأوروبي لكرة السلة  النسخة 18  التاريخ بداية:12 أكتوبر 2017  نهاية:20 مايو 2018  المنظم الدوري الأوروبي لكرة السلة  البطل ريال مدريد لكرة السلة  عدد المشاركين 16   الدوري الأوروبي لكرة السلة 2016-2017  الدور...

 

 

Tilo Prückner (2018) Tilo Prückner (* 26. Oktober 1940 in Augsburg; † 2. Juli 2020 in Berlin) war ein deutscher Theater- und Filmschauspieler. Er wurde unter anderem durch die Verkörperung oftmals verschrobener Charaktere in Fernsehproduktionen wie Tatort, Adelheid und ihre Mörder, Kommissarin Lucas oder Rentnercops bekannt. Grab von Tilo Prückner auf dem Alten St.-Matthäus-Kirchhof, 2020 Inhaltsverzeichnis 1 Leben 2 Karriere 2.1 Theater 2.2 Film und Fernsehen 3 Filmografie 3.1 Kino (...

American politician For the mathematical psychologist, see Robert Duncan Luce. Robert LuceMember of theU.S. House of Representatives from MassachusettsIn officeMarch 4, 1919 – January 3, 1935Preceded byWilliam Henry CarterSucceeded byRichard M. RussellConstituency13th district (1919–33)9th district (1933–35)In officeJanuary 3, 1937 – January 3, 1941Preceded byRichard M. RussellSucceeded byThomas H. EliotConstituency9th district42nd Lieutenant Governor of Massachusett...

 

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أغسطس 2019) كأس ديفيز 1956 تفاصيل الموسم كأس ديفيز  النسخة 45  البطل منتخب أستراليا لكأس �...

 

 

Orthotitanic acid Names IUPAC name Orthotitanic acid Identifiers CAS Number 20338-08-3 Y 3D model (JSmol) Interactive image ChemSpider 15640680 Y ECHA InfoCard 100.039.752 EC Number 243-744-3 MeSH titanium+hydroxide PubChem CID 88494 UNII W9EOP89V8G Y CompTox Dashboard (EPA) DTXSID30893907 InChI InChI=1S/4H2O.Ti/h4*1H2;/q;;;;+4/p-4 YKey: LLZRNZOLAXHGLL-UHFFFAOYSA-J Y SMILES O[Ti](O)(O)O Properties Chemical formula Ti(OH)4 Molar mass 115.90 g/mol ...

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Н...

 

 

Spanish and South American stew For the League of Legends player Jake Puchero, see Xmithie. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Puchero – news · newspapers · books · scholar · JSTOR (March 2011) (Learn how and when to remove this message) PucheroReady ingredients for a puchero in Andalusia, Spain...

 

 

John Brown Brown nel 2014 Nazionalità  Stati Uniti Altezza 178 cm Peso 81 kg Football americano Ruolo Wide receiver Squadra  Las Vegas Raiders CarrieraGiovanili 2011-2013 Pittsburgh State GorillasSquadre di club 2014-2017 Arizona Cardinals2018 Baltimore Ravens2019-2020 Buffalo Bills2021- Las Vegas Raiders Statistiche aggiornate al 9 aprile 2015 Modifica dati su Wikidata · Manuale John Brown (Homestead, 3 aprile 1990) è un giocatore di football americ...

Type of Irish folk dancing Irish set dancing, sometimes called Irish sets, is a popular form of folk dancing in Ireland danced to Irish tunes in groups of eight or four dancers. It is also sometime named set dance, but this name refers more often to a kind of dance in Irish stepdance. History Set dancing is based on quadrilles, which were court dances. These were transformed by the Irish into a unique folk dance of the Irish rural communities. When the Gaelic League was formed in 1897, it sou...

 

 

South Korean badminton player (born 1988) Badminton playerSon Wan-hoSon Wan-ho at the spring team event in 2015, held in HwacheonPersonal informationBorn (1988-05-17) 17 May 1988 (age 36)Changwon, South Gyeongsang, South KoreaResidenceSouth Gyeongsang, South KoreaHeight1.76 m (5 ft 9 in)Weight143 lb (65 kg)Years active2006–presentHandednessRightMen's singlesCareer record343 wins, 190 lossesHighest ranking1 (25 May 2017)Current ranking197 (18 July 2023...

 

 

Mucuna Mucuna poggei Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae (tanpa takson): Tracheophyta (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Rosid Ordo: Fabales Famili: Fabaceae Subfamili: Faboideae Tribus: Phaseoleae Genus: MucunaAdans.[1] Spesies Lihat teks Sinonim[1][2] Homotipik: Hornera Neck. ex A.Juss. (1821), nom. superfl. Heterotipik: Cacuvallum Medik. (1787) Carpopogon Roxb. (1827) Citta Lour. (1790) Labradia Swediaur (1801)...

Italo-tedeschiDeutschitalienerLuogo d'origine Italia  Germania Popolazionecirca 850.000 (discendenti italiani) 651.852 (cittadini italiani) Linguaitaliano, tedesco Religionecattolicesimo Distribuzione  Germania: Berlino, Stoccarda, Francoforte sul Meno, Colonia, Monaco di Baviera, Dortmund, Friburgo in Brisgovia, Norimberga, Amburgo, Düsseldorf, Ulma, Brema, Mannheim, Essen, Magonza, Aquisgrana ecc.circa 850.000 (discendenti italiani) 651.852 (cittadini italiani) Manuale ...

 

 

Municipality in Galicia, SpainCampo Lameiromunicipality SealCampo LameiroLocation in SpainCoordinates: 42°32′32″N 8°32′34″W / 42.54222°N 8.54278°W / 42.54222; -8.54278CountrySpainAutonomous communityGaliciaProvincePontevedraComarcaPontevedraGovernment • MayorJulio G Sayáns BugalloArea • Total63.82 km2 (24.64 sq mi)Population (2018)[1] • Total1,806 • Density28/km2 (73/sq mi)Tim...

 

 

Seekor anjing dengan ekor tegak Ekor atau buntut adalah bagian ujung belakang badan hewan. Sejumlah hewan memiliki ekor seperti kucing, anjing, kalajengking, ikan, dan monyet. Ekor memiliki berbagai fungsi pada hewan; sebagai alat gerak untuk ikan dan hewan air lain, sebagai alat keseimbangan bagi hewan darat (misalnya kucing) atau bahkan untuk memegang sesuatu (pada monyet). Gallery Ekor Singa (Panthera leo) Ekor kalajengking Ekor Babi (Sus domestica) Ekor Glyptodon (Glyptodon asper) Ekor ik...

American journalist Ian JohnsonBorn27 July 1962Montreal, Quebec, CanadaEducationUniversity of Florida, Free University of BerlinOccupationJournalistWebsitewww.ian-johnson.com Ian Johnson (born July 27, 1962) is a Canadian-born American journalist known for his long-time reporting and a series of books on China and Germany. His Chinese name is Zhang Yan (張彦).[1] Johnson writes regularly for The New York Review of Books[2] and The New York Times,[3] and The Wall Stre...

 

 

From Zero to I Love YouPoster filmSutradaraDoug SpearmanProduserTommy VillafrancaAlan KoenigsbergRendell BryceEric DalyLaird McClureMeade ThayerStephen W. WallaceVladislav YashkovMichael BuszaDitulis olehDoug SpearmanPemeranDarryl StephensScott BaileyPenata musikMervyn WarrenMalik WilliamsSinematograferKevin BarryPeter SteusloffPenyuntingChristo TsiarasPerusahaanproduksiMilton Ventures Media5 Child ProductionsEsplanade PicturesTanggal rilis 26 Maret 2019 (2019-03-26) (BFI Flare...

 

 

Kacamata-kuning buru Zosterops buruensis Status konservasiRisiko rendahIUCN22714151 TaksonomiKelasAvesOrdoPasseriformesFamiliZosteropidaeGenusZosteropsSpesiesZosterops buruensis Salvadori, 1878 DistribusiEndemikIndonesia Kacamata-kuninf Buru ( Zosterops buruensis ) adalah spesies burung dalam keluarga Zosteropidae . Ia endemik di pulau-pulau di Indonesia, termasuk pulau Buru yang menjadi asal muasal namanya. Habitat alaminya adalah hutan dataran rendah lembab subtropis atau tropis dan hutan p...

Pour les articles homonymes, voir Poudre (homonymie). Poudre de fer. Cannelle, entière et réduite en poudre La poudre est un état fractionné de la matière. Il s'agit d'un solide présent sous forme de petits morceaux, en général de taille inférieure au dixième de millimètre (100 µm). Surface spécifique Les poudres possèdent une grande surface spécifique. Cela permet des interactions rapides avec le milieu dispersant, en général l'air ou un liquide. Par exemple, la réduc...

 

 

千年紀: 2千年紀世紀: 17世紀 - 18世紀 - 19世紀十年紀: 1720年代 1730年代 1740年代 1750年代 1760年代年: 1739年 1740年 1741年 1742年 1743年 1744年 1745年 イギリス陸軍第22連隊(英語版) 1742年 1742年(1742 ねん)は、西暦(グレゴリオ暦)による、月曜日から始まる平年。 他の紀年法 この節は、ウィキプロジェクト 紀年法のガイドラインに基づいて記述されています。この節に大き�...