TMTFA has a reactive ketone group that can covalently bind to the serine residue in the active site of acetylcholinesterase. This is due to the electron-withdrawing trifluoromethyl group on the carbonyl group.[5]
^Brodbeck, U.; Schweikert, K.; Gentinetta, R.; Rottenberg, M. (April 1979). "Fluorinated aldehydes and ketones acting as quasi-substrate inhibitors of acetylcholinesterase". Biochimica et Biophysica Acta (BBA) - Enzymology. 567 (2): 357–369. doi:10.1016/0005-2744(79)90122-0. PMID444532.
^Nair, Haridasan K.; Lee, Keun; Quinn, Daniel M. (November 1993). "m-(N,N,N-Trimethylammonio)trifluoroacetophenone: a femtomolar inhibitor of acetylcholinesterase". Journal of the American Chemical Society. 115 (22): 9939–9941. doi:10.1021/ja00075a009.
^Kua, Jeremy; Zhang, Yingkai; McCammon, J. Andrew (2002). "Studying Enzyme Binding Specificity in Acetylcholinesterase Using a Combined Molecular Dynamics and Multiple Docking Approach". Journal of the American Chemical Society. 124 (28): 8260–8267. doi:10.1021/ja020429l. PMID12105904.
^Butini, Stefania; Campiani, Giuseppe; Borriello, Marianna; Gemma, Sandra; Panico, Alessandro; Persico, Marco; Catalanotti, Bruno; Ros, Sindu; Brindisi, Margherita; Agnusdei, Marianna; Fiorini, Isabella; Nacci, Vito; Novellino, Ettore; Belinskaya, Tatyana; Saxena, Ashima; Fattorusso, Caterina (2008). "Exploiting Protein Fluctuations at the Active-Site Gorge of Human Cholinesterases: Further Optimization of the Design Strategy to Develop Extremely Potent Inhibitors". Journal of Medicinal Chemistry. 51 (11): 3154–3170. doi:10.1021/jm701253t. PMID18479118.
^Harel, Michal; Quinn, Daniel M.; Nair, Haridasan K.; Silman, Israel; Sussman, Joel L. (January 1996). "The X-ray Structure of a Transition State Analog Complex Reveals the Molecular Origins of the Catalytic Power and Substrate Specificity of Acetylcholinesterase". Journal of the American Chemical Society. 118 (10): 2340–2346. doi:10.1021/ja952232h.