Strong orientation

In graph theory, a strong orientation of an undirected graph is an assignment of a direction to each edge (an orientation) that makes it into a strongly connected graph.

Strong orientations have been applied to the design of one-way road networks. According to Robbins' theorem, the graphs with strong orientations are exactly the bridgeless graphs. Eulerian orientations and well-balanced orientations provide important special cases of strong orientations; in turn, strong orientations may be generalized to totally cyclic orientations of disconnected graphs. The set of strong orientations of a graph forms a partial cube, with adjacent orientations in this structure differing in the orientation of a single edge. It is possible to find a single orientation in linear time, but it is #P-complete to count the number of strong orientations of a given graph.

Application to traffic control

Robbins (1939) introduces the problem of strong orientation with a story about a town, whose streets and intersections are represented by the given graph G. According to Robbins' story, the people of the town want to be able to repair any segment of road during the weekdays, while still allowing any part of the town to be reached from any other part using the remaining roads as two-way streets. On the weekends, all roads are open, but because of heavy traffic volume, they wish to convert all roads to one-way streets and again allow any part of town to be reached from any other part. Robbins' theorem states that a system of roads is suitable for weekday repairs if and only if it is suitable for conversion to a one-way system on weekends. For this reason, his result is sometimes known as the one-way street theorem.[1]

Subsequently to the work of Robbins, a series of papers by Roberts and Xu modeled more carefully the problem of turning a grid of two-way city streets into one-way streets, and examined the effect of this conversion on the distances between pairs of points within the grid. As they showed, the traditional one-way layout in which parallel streets alternate in direction is not optimal in keeping the pairwise distances as small as possible. However, the improved orientations that they found include points where the traffic from two one-way blocks meets itself head-on, which may be viewed as a flaw in their solutions.

If an undirected graph has an Euler tour, an Eulerian orientation of the graph (an orientation for which every vertex has indegree equal to its outdegree) may be found by orienting the edges consistently around the tour.[2] These orientations are automatically strong orientations.

A theorem of Nash-Williams (1960, 1969) states that every undirected graph G has a well-balanced orientation. This is an orientation with the property that, for every pair of vertices u and v in G, the number of pairwise edge-disjoint directed paths from u to v in the resulting directed graph is at least , where k is the maximum number of paths in a set of edge-disjoint undirected paths from u to v. Nash-Williams' orientations also have the property that they are as close as possible to being Eulerian orientations: at each vertex, the indegree and the outdegree are within one of each other. The existence of well-balanced orientations, together with Menger's theorem, immediately implies Robbins' theorem: by Menger's theorem, a 2-edge-connected graph has at least two edge-disjoint paths between every pair of vertices, from which it follows that any well-balanced orientation must be strongly connected. More generally this result implies that every 2k-edge-connected undirected graph can be oriented to form a k-edge-connected directed graph.

A totally cyclic orientation of a graph G is an orientation in which each edge belongs to a directed cycle. For connected graphs, this is the same thing as a strong orientation, but totally cyclic orientations may also be defined for disconnected graphs, and are the orientations in which each connected component of G becomes strongly connected. Robbins' theorem can be restated as saying that a graph has a totally cyclic orientation if and only if it does not have a bridge. Totally cyclic orientations are dual to acyclic orientations (orientations that turn G into a directed acyclic graph) in the sense that, if G is a planar graph, and orientations of G are transferred to orientations of the planar dual graph of G by turning each edge 90 degrees clockwise, then a totally cyclic orientation of G corresponds in this way to an acyclic orientation of the dual graph and vice versa.[3][4] The number of different totally cyclic orientations of any graph G is TG(0,2) where TG is the Tutte polynomial of the graph, and dually the number of acyclic orientations is TG(2,0).[5] As a consequence, Robbins' theorem implies that the Tutte polynomial has a root at the point (0,2) if and only if the graph G has a bridge.

If a strong orientation has the property that all directed cycles pass through a single edge st (equivalently, if flipping the orientation of an edge produces an acyclic orientation) then the acyclic orientation formed by reversing st is a bipolar orientation. Every bipolar orientation is related to a strong orientation in this way.[6]

Flip graphs

If G is a 3-edge-connected graph, and X and Y are any two different strong orientations of G, then it is possible to transform X into Y by changing the orientation of a single edge at a time, at each step preserving the property that the orientation is strong.[7] Therefore, the flip graph whose vertices correspond to the strong orientations of G, and whose edges correspond to pairs of strong orientations that differ in the direction of a single edge, forms a partial cube.

Algorithms and complexity

A strong orientation of a given bridgeless undirected graph may be found in linear time by performing a depth-first search of the graph, orienting all edges in the depth-first search tree away from the tree root, and orienting all the remaining edges (which must necessarily connect an ancestor and a descendant in the depth-first search tree) from the descendant to the ancestor.[8] If an undirected graph G with bridges is given, together with a list of ordered pairs of vertices that must be connected by directed paths, it is possible in polynomial time to find an orientation of G that connects all the given pairs, if such an orientation exists. However, the same problem is NP-complete when the input may be a mixed graph.[9]

It is #P-complete to count the number of strong orientations of a given graph G, even when G is planar and bipartite.[3][10] However, for dense graphs (more specifically, graphs in which each vertex has a linear number of neighbors), the number of strong orientations may be estimated by a fully polynomial-time randomized approximation scheme.[3][11] The problem of counting strong orientations may also be solved exactly, in polynomial time, for graphs of bounded treewidth.[3]

Notes

References

Read other articles:

Untuk kegunaan lain, lihat Kawin Kontrak (disambiguasi). Kawin Kontrak 3Poster filmSutradaraAwi SuryadiProduserRaam PunjabiPemeranGary IskakFerry ArdiansyahAlbert HalimAbdurrahman ArifShinta BachirNadia VellaAdelia RasyaAnne J. CottoPerusahaanproduksiMVP PicturesDistributorMultivision PlusTanggal rilisDurasi1 jam 25 menit Kawin Kontrak 3 adalah film drama Indonesia yang dirilis pada 5 September 2013. Film ini disutradarai oleh Awi Suryadi dan dibintangi oleh Gary Iskak dan Ferry Ardiansyah. S...

 

  Grand Prix Malaysia 2018Detail lombaLomba ke 18 dari 19Grand Prix Sepeda Motor musim 2018Tanggal4 November 2018Nama resmiShell Malaysia Motorcycle Grand Prix[1]LokasiSepang International Circuit, Sepang, Selangor, MalaysiaSirkuitFasilitas balapan permanen5.543 km (3.444 mi)Penonton103,984MotoGPPole positionPembalap Marc Márquez[N 1] HondaCatatan waktu 2:12.161 Putaran tercepatPembalap Álex Rins SuzukiCatatan waktu 2:00.762 di lap 5 PodiumPertama Marc M�...

 

Kommunalka di Medyn, Oblast Kaluga. Apartemen komunal (tunggal: Rusia: коммунальная квартираcode: ru is deprecated , kommunal'naya kvartira, slang. kommunalka) adalah sebuah jenis apartemen yang dibangun di Uni Soviet setelah Revolusi Oktober 1917. Istilah apartemen komunal adalah produk zaman Soviet.[1] Konsep apartemen komunal berkembang di Rusia dan Uni Soviet sebagai tanggapan terhadap krisis tempat tinggal di kawasan perkotaan. Otoritas mempersembahkannya seba...

Lambang negara Lebanon Lambang negara Lebanon (Bahasa Arab: شعار لبنان) terdiri atas perisai merah dengan bidang pita putih melintang dan di atas bidang putih itu terletak gambar pohon Sedar. Lambang ini hampir sama persis dengan Bendera Lebanon, dengan pengecualian dasar putih mendatar di tengah digantikan dengan bidang putih melintang. Lihat juga Bendera Lebanon lbsLambang negara-negara di AsiaNegaraberdaulat Afganistan Arab Saudi Armenia1 Azerbaijan1 Bahrain Bangladesh Bhutan Brun...

 

Penyuntingan Artikel oleh pengguna baru atau anonim untuk saat ini tidak diizinkan.Lihat kebijakan pelindungan dan log pelindungan untuk informasi selengkapnya. Jika Anda tidak dapat menyunting Artikel ini dan Anda ingin melakukannya, Anda dapat memohon permintaan penyuntingan, diskusikan perubahan yang ingin dilakukan di halaman pembicaraan, memohon untuk melepaskan pelindungan, masuk, atau buatlah sebuah akun. Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon...

 

Tokugawa Ieshige est un nom japonais traditionnel ; le nom de famille (ou le nom d'école), Tokugawa, précède donc le prénom (ou le nom d'artiste) Ieshige. Cet article est une ébauche concernant une personnalité japonaise et l’histoire. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Tokugawa IeshigeFonctionsKonoe Daisho (d)ShogunNaidaijinUdaijinBiographieNaissance 28 janvier 1712AkasakaDécès ...

غيموندن    شعار   الإحداثيات 50°58′00″N 8°58′00″E / 50.966666666667°N 8.9666666666667°E / 50.966666666667; 8.9666666666667  [1] تقسيم إداري  البلد ألمانيا[2][3]  خصائص جغرافية  المساحة 58.65 كيلومتر مربع (31 ديسمبر 2017)[4]  ارتفاع 249 متر  عدد السكان  عدد السكان 3961 (31...

 

County/Bailiwick of KyburgGrafschaft/Landvogtei Kyburg1053–1798 Coat of arms(c.1180–1230)[2] Coat of arms(after 1263)[1] Feudal territories in Switzerland c. 1200. The territory of the house of Kyburg, including their terrories inherited from Lenzburg in 1173, is shown in yellow.CapitalKyburgGovernmentFeudalismGraf • d. 1121 Hartmann I. von Dillingen Landvogt • 1795–1798 Hans Caspar Ulrich History • Death of Adalbert II von Win...

 

Classical ballet company Royal Danish BalletThe Royal Danish Theatre in Copenhagen, principal venue of the Royal Danish BalletGeneral informationNameRoyal Danish BalletLocal nameDen Kongelige BalletYear founded1748FounderKing Frederick VPrincipal venueRoyal Danish TheatreWebsitekglteater.dkArtistic staffBallet MasterNikolaj HübbeOtherOrchestraRoyal Danish OrchestraOfficial schoolRoyal Danish Ballet school The Royal Danish Ballet (Danish: Den Kongelige Ballet) is an internationally renowned c...

South Dakota vehicle license plates South DakotaCurrent seriesSloganGreat Faces. Great Places.Size12 in × 6 in30 cm × 15 cmMaterialAluminumSerial format1A1 2341AB 12310A 12310A B1244A BC1(county-coded)IntroducedJanuary 2023 (2023-01)AvailabilityIssued bySouth Dakota Department of Revenue, Motor Vehicle DivisionHistoryFirst issuedJuly 1, 1913 (1913-07-01)[1](pre-state plates from 1905 through June 30, 1913)vte The U.S. state of S...

 

Town in North Rhine-Westphalia, GermanyLemgo TownMarket Square of Lemgo Coat of armsLocation of Lemgo within Lippe district Lemgo Show map of GermanyLemgo Show map of North Rhine-WestphaliaCoordinates: 52°1′38″N 8°54′42″E / 52.02722°N 8.91167°E / 52.02722; 8.91167CountryGermanyStateNorth Rhine-WestphaliaAdmin. regionDetmold DistrictLippe Government • Mayor (2020–25) Markus Baier[1] (Ind.)Area • Total100.85 km2 (38....

 

Study of fashion and clothing by period in time Textile history redirects here. For the academic journal, see Textile History. The study of the history of clothing and textiles traces the development, use, and availability of clothing and textiles over human history. Clothing and textiles reflect the materials and technologies available in different civilizations at different times. The variety and distribution of clothing and textiles within a society reveal social customs and culture. The w...

Disambiguazione – Se stai cercando altri significati, vedi Colli Albani (disambigua). Questa voce o sezione sugli argomenti montagne d'Italia e Lazio non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Colli AlbaniPanorama da ovest dei Colli Albani dalla campagna lanuvinaStato Italia Regione Lazio...

 

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: 2024 German Darts Championship – news · newspapers · books · scholar · JSTOR (June 2024) (Learn how and when to remove this message) 2024 German Darts ChampionshipTournament informationDates30 August–1 September 2024VenueHalle 39LocationHildesheimCountry GermanyOrganisation(s)PDCFormatLegsPrize fund...

 

التوزيع الهندسي[1] (بالإنكليزية: Geometric distribution) وهو جزء من التوزيع الاحتمالي المتعلق بتجارب بيرنولي، ويستخدم التوزيع الهندسي النموذج التالي: كم عدد المحاولات التي نحتاجها للحصول على النتيجة المطلوبة؟ إن التوزيع الهندسي يستخدم من أجل التوزيع التكراري للبيانات الكمية ا�...

Bangladeshi Women's Football club Football clubJamalpur Kacharipara AkadasFull nameJamalpur Kacharipara AkadasNickname(s)JKXIFounded2006; 18 years ago (2006)GroundBir Sherestha Shaheed Shipahi Mostafa Kamal StadiumCapacity25,000Owner Kamrunnesa Ashraf DinaPresident Md Nural IslamHead coach Jafor AhmedLeagueBangladesh Women's Football League2023–249th of 9 Current season Jamalpur Kacharipara Akadas (Bengali: জামালপুর কাচাঁরীপাড়া এ�...

 

1775 bombardment of Falmouth, Massachusetts by Royal Navy ships Burning of FalmouthPart of the American Revolutionary WarDetail from a 1777 nautical chart showing Falmouth (now Portland, Maine)DateOctober 18, 1775 (1775-10-18)LocationFalmouth, Massachusetts (present-day Portland, Maine)ParticipantsHenry Mowat vteBoston campaign 1774–1776 1774 Powder Alarm Suffolk Resolves 1775 Lexington and Concord Lexington Alarm Siege of Boston Thompson's War Menotomy Fairhaven Chelsea Cree...

 

Australian politician Thomas BridgesThomas Bridges,1939Member of the Queensland Legislative Assemblyfor NundahIn office21 March 1896 – 18 May 1907Preceded byGeorge AgnewSucceeded byRichard SumnerIn office2 October 1909 – 16 March 1918Preceded byRichard SumnerSucceeded byHubert Sizer Personal detailsBornThomas Bridges(1853-11-12)12 November 1853Nundah, Brisbane, Colony of New South WalesDied4 June 1939(1939-06-04) (aged 85)Brisbane, Queensland, AustraliaResting place...

Anne McClainAstronauta della NASANazionalità Stati Uniti StatusIn attività Data di nascita7 giugno 1979 Selezione2013, NASA Astronaut Group 21 Altre attivitàPilota, U.S. Army Tempo nello spazio203 giorni, 15 ore e 16 minuti Numero EVA2 Durata EVA13h 09min Missioni Sojuz MS-11 Expedition 57 Expedition 58 Expedition 59 Modifica dati su Wikidata · Manuale Anne Charlotte McClain, detta Annimal (Spokane, 7 giugno 1979), è un'astronauta e militare statunitense selezionata dalla NASA ...

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها.   لمعانٍ أخرى، طالع خلوة (توضيح). جزء من سلسلة مقالات حولالتصوف المفاهيم الشهادتان الصلاة الصوم الحج الزكاة الطهارة الشعر الصوفي علم النفس الصوفي الأبدال الإحسان الإنسا...