Menger's theorem

In the mathematical discipline of graph theory, Menger's theorem says that in a finite graph, the size of a minimum cut set is equal to the maximum number of disjoint paths that can be found between any pair of vertices. Proved by Karl Menger in 1927, it characterizes the connectivity of a graph. It is generalized by the max-flow min-cut theorem, which is a weighted, edge version, and which in turn is a special case of the strong duality theorem for linear programs.

Edge connectivity

The edge-connectivity version of Menger's theorem is as follows:

Let G be a finite undirected graph and x and y two distinct vertices. Then the size of the minimum edge cut for x and y (the minimum number of edges whose removal disconnects x and y) is equal to the maximum number of pairwise edge-disjoint paths from x to y.

The implication for the graph G is the following version:

A graph is k-edge-connected (it remains connected after removing fewer than k edges) if and only if every pair of vertices has k edge-disjoint paths in between.

Vertex connectivity

The vertex-connectivity statement of Menger's theorem is as follows:

Let G be a finite undirected graph and x and y two nonadjacent vertices. Then the size of the minimum vertex cut for x and y (the minimum number of vertices, distinct from x and y, whose removal disconnects x and y) is equal to the maximum number of pairwise internally disjoint paths from x to y.

A consequence for the entire graph G is this version:

A graph is k-vertex-connected (it has more than k vertices and it remains connected after removing fewer than k vertices) if and only if every pair of vertices has at least k internally disjoint paths in between.

Directed graphs

All these statements in both edge and vertex versions remain true in directed graphs (when considering directed paths).

Short proof

Most direct proofs consider a more general statement to allow proving it by induction. It is also convenient to use definitions that include some degenerate cases. The following proof for undirected graphs works without change for directed graphs or multi-graphs, provided we take path to mean directed path.

For sets of vertices A,B ⊂ G (not necessarily disjoint), an AB-path is a path in G with a starting vertex in A, a final vertex in B, and no internal vertices either in A or in B. We allow a path with a single vertex in A ∩ B and zero edges. An AB-separator of size k is a set S of k vertices (which may intersect A and B) such that G−S contains no AB-path. An AB-connector of size k is a union of k vertex-disjoint AB-paths.

Theorem: The minimum size of an AB-separator is equal to the maximum size of an AB-connector.

In other words, if no k−1 vertices disconnect A from B, then there exist k disjoint paths from A to B. This variant implies the above vertex-connectivity statement: for x,y ∈ G in the previous section, apply the current theorem to G−{x,y} with A = N(x), B = N(y), the neighboring vertices of x,y. Then a set of vertices disconnecting x and y is the same thing as an AB-separator, and removing the end vertices in a set of independent xy-paths gives an AB-connector.

Proof of the Theorem:[1] Induction on the number of edges in G. For G with no edges, the minimum AB-separator is A ∩ B, which is itself an AB-connector consisting of single-vertex paths.

For G having an edge e, we may assume by induction that the Theorem holds for G−e. If G−e has a minimal AB-separator of size k, then there is an AB-connector of size k in G−e, and hence in G.

An illustration for the proof.

Otherwise, let S be a AB-separator of G−e of size less than k, so that every AB-path in G contains a vertex of S or the edge e. The size of S must be k-1, since if it was less, S together with either endpoint of e would be a better AB-separator of G. In G−S there is an AB-path through e, since S alone is too small to be an AB-separator of G. Let v1 be the earlier and v2 be the later vertex of e on such a path. Then v1 is reachable from A but not from B in G−S−e, while v2 is reachable from B but not from A.

Now, let S1 = S ∪ {v1}, and consider a minimum AS1-separator T in G−e. Since v2 is not reachable from A in G−S1, T is also an AS1-separator in G. Then T is also an AB-separator in G (because every AB-path intersects S1). Hence it has size at least k. By induction, G−e contains an AS1-connector C1 of size k. Because of its size, the endpoints of the paths in it must be exactly S1.

Similarly, letting S2 = S ∪ {v2}, a minimum S2B-separator has size k, and there is an S2B-connector C2 of size k, with paths whose starting points are exactly S2.

Furthermore, since S1 disconnects G, every path in C1 is internally disjoint from every path in C2, and we can define an AB-connector of size k in G by concatenating paths (k−1 paths through S and one path going through e=v1v2). Q.E.D.

Other proofs

The directed edge version of the theorem easily implies the other versions. To infer the directed graph vertex version, it suffices to split each vertex v into two vertices v1, v2, with all ingoing edges going to v1, all outgoing edges going from v2, and an additional edge from v1 to v2. The directed versions of the theorem immediately imply undirected versions: it suffices to replace each edge of an undirected graph with a pair of directed edges (a digon).

The directed edge version in turn follows from its weighted variant, the max-flow min-cut theorem. Its proofs are often correctness proofs for max flow algorithms. It is also a special case of the still more general (strong) duality theorem for linear programs.

A formulation that for finite digraphs is equivalent to the above formulation is:

Let A and B be sets of vertices in a finite digraph G. Then there exists a family P of disjoint AB-paths and an AB-separating set that consists of exactly one vertex from each path in P.

In this version the theorem follows in fairly easily from Kőnig's theorem: in a bipartite graph, the minimal size of a cover is equal to the maximal size of a matching.

This is done as follows: replace every vertex v in the original digraph D by two vertices v' , v'', and every edge uv by the edge u'v''; additionally, include the edges v'v'' for every vertex v that is neither in A nor B. This results in a bipartite graph, whose one side consists of the vertices v' , and the other of the vertices v''.

Applying Kőnig's theorem we obtain a matching M and a cover C of the same size. In particular, exactly one endpoint of each edge of M is in C. Add to C all vertices a'', for a in A, and all vertices b' , for b in B. Let P be the set of all AB-paths composed of edges uv in D such that u'v'' belongs to M. Let Q in the original graph consist of all vertices v such that both v' and v'' belong to C. It is straightforward to check that Q is an AB-separating set, that every path in the family P contains precisely one vertex from Q, and every vertex in Q lies on a path from P, as desired.[2]

Infinite graphs

Menger's theorem holds for infinite graphs, and in that context it applies to the minimum cut between any two elements that are either vertices or ends of the graph (Halin 1974). The following result of Ron Aharoni and Eli Berger was originally a conjecture proposed by Paul Erdős, and before being proved was known as the Erdős–Menger conjecture. It is equivalent to Menger's theorem when the graph is finite.

Let A and B be sets of vertices in a (possibly infinite) digraph G. Then there exists a family P of disjoint A-B-paths and a separating set which consists of exactly one vertex from each path in P.

See also

References

  1. ^ Göring, Frank (2000). "Short proof of Menger's theorem". Discrete Mathematics. 219 (1–3): 295–296. doi:10.1016/S0012-365X(00)00088-1.
  2. ^ Aharoni, Ron (1983). "Menger's theorem for graphs containing no infinite paths". European Journal of Combinatorics. 4 (3): 201–4. doi:10.1016/S0195-6698(83)80012-2.

Further reading

Read other articles:

Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Bahasa Interslavia medžuslovjansky, меджусловјанскы Dibuat olehOndrej Rečnik, Gabriel Svoboda, Jan van Steenbergen, Igor Polyakov, Vojtěch Merunka, Steeven RadzikowskiTanggal2006PenggunaRatusan (2012)[1] Rincian data penutur Jumlah penutur beserta (jika ada) metode pengambilan, jenis, tanggal, dan tempat. ...

 

 

Crockett County, TexasThe Crockett County Courthouse in Ozona.Lokasi di negara bagian TexasLokasi negara bagian Texas di Amerika SerikatDidirikan1875SeatOzonaWilayah • Keseluruhan2.807 sq mi (7.270 km2) • Daratan2.807 sq mi (7.270 km2)Populasi • (2000)4.099 • Kepadatan1,46/sq mi (0,56/km²)Situs webwww.co.crockett.tx.us Crockett County adalah county yang terletak di negara bagian Texas, Amerika Serikat. Jumlah ...

 

 

Oxford UnitedNama lengkapOxford United Football ClubJulukanThe Us, Yellows, The Boys from Up the Hill (sebagai Headington United)Berdiri1893 (sebagai Headington United)StadionStadion KassamOxford(Kapasitas: 12,500)PemilikErick Thohir & Anindya BakrieKetuaGrant FergusonManajerIson RobinsonLigaLiga Satu Inggris2021–22ke-8, Liga Satu InggrisSitus webSitus web resmi klub Kostum kandang Kostum tandang Kostum ketiga Musim ini Oxford United Football Club adalah sebuah klub sepak bola Ingg...

Indian politician Y. S. Jagan Mohan ReddyReddy in 201917th Chief Minister of Andhra PradeshIncumbentAssumed office 30 May 2019[1]Governor E. S. L. Narasimhan[2] (2019) B. Harichandan[3] (2019-2023) S. Abdul Nazeer[4] (2023-present) Cabinet YS Jagan IDeputy Chief Minister K. Narayana Swamy[5](2019-present) Amzath Basha[6] (2019-present) P. Pushpasreevani[7](2019-2022) P. Subhash Chandra Bose[8](2019-2020) Alla Nani[9](...

 

 

Pour les articles homonymes, voir Télévision (homonymie) et TV (homonymie). « Téloche » redirige ici. Pour la commune, voir Teloché. TélévisionUn téléviseur Braun de 1958.Type Télédiffusion, médias de masseCaractéristiquesComposé de Station de télévision, chaîne de télévision, réseau de télévision, téléviseur, téléspectateur, people-meter (en)InventionInventeurs Soham Patel (d), Charles Francis JenkinsFonctionnementProduits Programme télévisé, film d'u...

 

 

Bagian dari seri PolitikPartai politik Spektrum politik Kiri dan kanan Sayap kiri Kiri jauhKiri tengah Sentris Kiri tengahTengah radikalKanan tengah Sayap kanan Kanan tengahKanan jauh Platform/Ideologi Anarkis Demokrasi Kristen Komunis Konservatif Demokrasi Environmentalis Fasis Fundamentalis Globalis Hijau Internasionalis Liberal Libertarian Nasionalis Partai Bajak Laut Populis Progresif Regionalis Republikan Demokrasi sosial Sosialis Sinkretis Jenis Partai elit Partai kartel Partai tenda be...

Catatan: Dalam sumber-sumber sebelum tahun 1960an, Paus ini kadang-kadang disebut Stefanus V dan Paus Stefanus III disebut Stefanus IV. Lihat artikel Paus Stefanus untuk keterangan lebih lanjut. PausStefanus IVAwal masa kepausan22 Juni 816Akhir masa kepausan24 Januari 817PendahuluLeo IIIPenerusPaskalis IInformasi pribadiNama lahirtidak diketahuiLahirtidak diketahuiWafat24 Januari 817Roma, ItaliaPaus lainnya yang bernama Stefanus Paus Stefanus IV (???-24 Januari 817) adalah Paus Gere...

 

 

Ir.Panggah SusantoM.M. Anggota Dewan Perwakilan Rakyat Republik IndonesiaPetahanaMulai menjabat 1 Oktober 2019PresidenJoko WidodoDaerah pemilihanJawa Tengah VI Informasi pribadiLahir19 Oktober 1958 (umur 65)Temanggung, Jawa TengahPartai politikGolkarSuami/istriSri HariningsihAnak3Alma materInstitut Teknologi Bandung STIE-IPWI JakartaPekerjaanBirokrat, PolitikusSunting kotak info • L • B Ir. Panggah Susanto, M.M. (lahir 19 Oktober 1958) adalah politikus Indonesia yang me...

 

 

Defunct flying squadron of the Royal Air Force This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: No. 165 Squadron RAF – news · newspapers · books · scholar ·...

Gua KharismaLeang KharismaLokasiDusun Kappang, Desa Labuaja, Kecamatan Cenrana, Kabupaten Maros, Sulawesi Selatan, IndonesiaPanjang330 mGeologikarst / batu kapur / batu gampingSitus webvisit.maroskab.go.idcagarbudaya.kemdikbud.go.id Gua Kharisma' atau Leang Kharisma' (Inggris: Kharisma Cave ) adalah sebuah gua di Kawasan Karst Maros-Pangkep, Taman Nasional Bantimurung-Bulusaraung, wilayah administratif Kabupaten Maros. Lokasi gua ini secara administratif terletak di wilayah Dusun Kappang...

 

 

Location of Lafourche Parish in Louisiana This is a list of the National Register of Historic Places listings in Lafourche Parish, Louisiana. This is intended to be a complete list of the properties and districts on the National Register of Historic Places in Lafourche Parish, Louisiana, United States. The locations of National Register properties and districts for which the latitude and longitude coordinates are included below, may be seen in a map.[1] There are 38 properties and di...

 

 

English botanist and pioneer in ecology Sir Arthur TansleyArthur Tansley in the 1890sBornArthur George Tansley(1871-08-15)15 August 1871London, EnglandDied25 November 1955(1955-11-25) (aged 84)Grantchester, EnglandKnown forNew Phytologist, British Ecological Society, Ecosystem conceptSpouse(s)Edith, Lady Tansley (née Chick)AwardsLinnean Medal (1941)Fellow of the Royal Society[1]Scientific careerNotable studentsAlexander Watt Sir Arthur George Tansley FLS, FRS[1] (15...

Шалфей обыкновенный Научная классификация Домен:ЭукариотыЦарство:РастенияКлада:Цветковые растенияКлада:ЭвдикотыКлада:СуперастеридыКлада:АстеридыКлада:ЛамиидыПорядок:ЯсноткоцветныеСемейство:ЯснотковыеРод:ШалфейВид:Шалфей обыкновенный Международное научное наз...

 

 

Niedermorschwihrcomune Niedermorschwihr – Veduta LocalizzazioneStato Francia RegioneGrand Est Dipartimento Alto Reno ArrondissementRibeauvillé CantoneWintzenheim TerritorioCoordinate48°06′N 7°17′E / 48.1°N 7.283333°E48.1; 7.283333 (Niedermorschwihr)Coordinate: 48°06′N 7°17′E / 48.1°N 7.283333°E48.1; 7.283333 (Niedermorschwihr) Superficie3,35 km² Abitanti580[1] (2009) Densità173,13 ab./km² Altre informazioniCod. p...

 

 

В Википедии есть статьи о других людях с именем Иоиль.Иоиль, сын Вафуиладр.-евр. ‏יוֹאֵל בֶּן פְּתוּאֵל‏‎ Родился V век до н. э. (по другим оценкам, между IX и II вв до н. э.)Иудея В лике святой День памяти 19 октября  Медиафайлы на Викискладе Иои́ль (др.-евр. ‏יוֹאֵלR...

The Tempest The Tempest adalah sandiwara komedi atau roman karya William Shakespeare yang ditulis sekitar tahun 1610-1611. Mulanya tidak begitu diminati oleh orang-orang, tetapi pada abad keduapuluh sandiwara ini mendapat pujian dari para kritikus dan ahli, hingga disebut sebagai salah satu karya terbaik Shakespeare. Terjemahan ke dalam bahasa Indonesianya berjudul Prahara dan dilakukan oleh Trisno Sumardjo.[1] Gramedia menerbitkan The Tempest pada tahun 1977 dengan judul Ferdinand da...

 

 

Северный морской котик Самец Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапси...

 

 

مارثا واشنطن (بالإنجليزية: Martha Washington)‏  معلومات شخصية اسم الولادة (بالإنجليزية: Martha Dandridge)‏  الميلاد 2 يونيو 1731(1731-06-02)فيرجينيا الوفاة 22 مايو 1802 (70 سنة)ماونت فيرنون مكان الدفن ماونت فيرنون[1][2][3]  الجنسية الولايات المتحدة الأمريكية الديانة أنجليكانية الزو...

Russian footballer and coach This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Nikolai Khudiyev – news · newspapers · books · scholar · JSTOR (August 2020) (Learn how and when to remove this messa...

 

 

Trinko KeenTrinko Keen (2007) di EindhovenPersonal informationNama lengkapTrinko KeenKebangsaan BelandaLahir18 November 1971 (umur 52)Wageningen, Belanda Rekam medali Putra Tenis Meja Mewakili  Belanda Kejuaraan Eropa 2008 Saint Petersburg Doubles 2002 Zagreb Doubles Trinko Keen (lahir 22 September 1971) adalah pemain tenis meja profesional Belanda. Dia adalah adik dari Gerdie Keen. Karier awal Ia pemain bertangan kidal. Di Kejuaraan Belanda ia memenangkan enam gelar tunggal (1...