K-edge-connected graph

In graph theory, a connected graph is k-edge-connected if it remains connected whenever fewer than k edges are removed.

The edge-connectivity of a graph is the largest k for which the graph is k-edge-connected.

Edge connectivity and the enumeration of k-edge-connected graphs was studied by Camille Jordan in 1869.[1]

Formal definition

A 2-edge-connected graph

Let be an arbitrary graph. If the subgraph is connected for all where , then G is said to be k-edge-connected. The edge connectivity of is the maximum value k such that G is k-edge-connected. The smallest set X whose removal disconnects G is a minimum cut in G.

The edge connectivity version of Menger's theorem provides an alternative and equivalent characterization, in terms of edge-disjoint paths in the graph. If and only if every two vertices of G form the endpoints of k paths, no two of which share an edge with each other, then G is k-edge-connected. In one direction this is easy: if a system of paths like this exists, then every set X of fewer than k edges is disjoint from at least one of the paths, and the pair of vertices remains connected to each other even after X is deleted. In the other direction, the existence of a system of paths for each pair of vertices in a graph that cannot be disconnected by the removal of few edges can be proven using the max-flow min-cut theorem from the theory of network flows.

Minimum vertex degree gives a trivial upper bound on edge-connectivity. That is, if a graph is k-edge-connected then it is necessary that k ≤ δ(G), where δ(G) is the minimum degree of any vertex v ∈ V. Deleting all edges incident to a vertex v would disconnect v from the graph.

Edge connectivity is the dual concept to girth, the length of the shortest cycle in a graph, in the sense that the girth of a planar graph is the edge connectivity of its dual graph, and vice versa. These concepts are unified in matroid theory by the girth of a matroid, the size of the smallest dependent set in the matroid. For a graphic matroid, the matroid girth equals the girth of the underlying graph, while for a co-graphic matroid it equals the edge connectivity.[2]

The 2-edge-connected graphs can also be characterized by the absence of bridges, by the existence of an ear decomposition, or by Robbins' theorem according to which these are exactly the graphs that have a strong orientation.[3]

Computational aspects

There is a polynomial-time algorithm to determine the largest k for which a graph G is k-edge-connected. A simple algorithm would, for every pair (u,v), determine the maximum flow from u to v with the capacity of all edges in G set to 1 for both directions. A graph is k-edge-connected if and only if the maximum flow from u to v is at least k for any pair (u,v), so k is the least u-v-flow among all (u,v).

If n is the number of vertices in the graph, this simple algorithm would perform iterations of the Maximum flow problem, which can be solved in time. Hence the complexity of the simple algorithm described above is in total.

An improved algorithm will solve the maximum flow problem for every pair (u,v) where u is arbitrarily fixed while v varies over all vertices. This reduces the complexity to and is sound since, if a cut of capacity less than k exists, it is bound to separate u from some other vertex. It can be further improved by an algorithm of Gabow that runs in worst case time. [4]

The Karger–Stein variant of Karger's algorithm provides a faster randomized algorithm for determining the connectivity, with expected runtime .[5]

A related problem: finding the minimum k-edge-connected spanning subgraph of G (that is: select as few as possible edges in G that your selection is k-edge-connected) is NP-hard for .[6]

See also

References

  1. ^ Jordan, Camille (1869). "Sur les assemblages de lignes". Journal für die reine und angewandte Mathematik (in French). 70 (2): 185–190.
  2. ^ Cho, Jung Jin; Chen, Yong; Ding, Yu (2007), "On the (co)girth of a connected matroid", Discrete Applied Mathematics, 155 (18): 2456–2470, doi:10.1016/j.dam.2007.06.015, MR 2365057.
  3. ^ Robbins, H. E. (1939). "A theorem on graphs, with an application to a problem on traffic control". American Mathematical Monthly. 46 (5): 281–283. doi:10.2307/2303897. JSTOR 2303897.
  4. ^ Harold N. Gabow. A matroid approach to finding edge connectivity and packing arborescences. J. Comput. Syst. Sci., 50(2):259–273, 1995.
  5. ^ Karger, David R.; Stein, Clifford (1996). "A new approach to the minimum cut problem" (PDF). Journal of the ACM. 43 (4): 601. doi:10.1145/234533.234534.
  6. ^ M.R. Garey and D.S. Johnson. Computers and Intractability: a Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

Read other articles:

1980s American animated series This article is about the original Transformers animated series. For information on other Transformers animated series, see List of Transformers animated series. The TransformersGenre Science fiction Action Adventure Robot Created by Hasbro Takara Tomy Based onTransformersby Hasbro & Takara TomyDeveloped byDick Robbins (seasons 1–2)Bryce Malek (seasons 1–2)Flint Dille (seasons 3–4)Marv Wolfman (seasons 3–4)Steve Gerber (seasons 3–4) Chief directors...

 

Desert in Poland Siedlec DesertSiedlec DesertShow map of PolandSiedlec DesertShow map of Europe without the extreme northArea0.3 km2 (0.12 sq mi)NamingNative namePustynia Siedlecka (Polish)GeographyCountryPolandCoordinates50°42′16″N 19°21′35″E / 50.70444°N 19.35972°E / 50.70444; 19.35972  The Siedlec Desert (Polish: Pustynia Siedlecka) is an area of sand near the village of Siedlec, district of Gmina Janów, within Częstochowa Cou...

 

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) PFN Di Jakarta,Indonesia Perusahaan adalah tempat terjadinya kegiatan produksi dan berkumpulnya semua faktor produksi barang dan jasa. Ada perusah...

Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Bahasa KangeanBPS: 0092 6 Bhânta KangèyanBhânta KangayanOca' KangèyanOca' Kangayan Pengucapan/kʌŋɛʌn/Dituturkan diIndonesiaWilayahKepulauan KangeanEtnisKangeanPenutur128.000 (2010)[1]~130.100[a] Rumpun bahasa Austronesia Melayu-Polinesia Melayu-Sumbawa (?) Madura-Kangean Bahasa Kangean Bentuk bakuKangean BakuD...

 

Election for the governorship of the U.S. state of Hawaii For related races, see 2022 United States gubernatorial elections. 2022 Hawaii gubernatorial election ← 2018 November 8, 2022 2026 → Turnout48.4%   Nominee Josh Green Duke Aiona Party Democratic Republican Running mate Sylvia Luke Seaula Tupa'i Jr. Popular vote 261,025 152,237 Percentage 63.2% 36.8% County results Precinct resultsGreen:      50–60%     ...

 

Takumi KitamuraKitamura Takumi dari Tremble All You Want pada Upacara Pembukaan Festival Film Internasional Tokyo 2017Nama asal北村 匠海Lahir3 November 1997 (umur 26)Tokyo, JepangKebangsaanJepangPekerjaanAktorpenyanyimodelTahun aktif2008-sekarangAgenStardust PromotionGayaDrama televisifilmTinggi175 m (574 ft 2 in)[1]Situs webOfficial profile Takumi Kitamura (北村 匠海code: ja is deprecated , Kitamura Takumi, lahir 3 November 1997)[2] adal...

Untuk fenomena psikologis, lihat Déjà vu. Deja VuAlbum studio karya Indah Dewi PertiwiDirilis14 Januari 2015GenrePopDurasi44:33LabelKeci MusicMusic Factory IndonesiaActplusProduserAhmad Dhani, Charly van Houten, Yon Koeswoyo, Sandy Canester, Piyu, TohpatiKronologi Indah Dewi Pertiwi Teman Ter-Indah(2012)Teman Ter-Indah2012 Deja Vu (2015) Deja Vu merupakan album musik ketiga karya Indah Dewi Pertiwi. Dirilis pada tahun 2015. Album ini akan membawanya ke nuansa 90-an dan bergenre mellow, ...

 

Australian children's music group This article is about the children's musical group. For their self-titled debut album, see The Wiggles (album). Wiggles redirects here. For other uses, see Wiggle. The WigglesThe Wiggles lineup in 2022 (L–R: Tsehay Hawkins, Caterina Mete, Lachlan Gillespie, Lucia Field, Simon Pryce, Evie Ferris, Anthony Field, John Pearce)Background informationOriginSydney, New South Wales, AustraliaGenresChildren'sYears active1991–presentLabelsABC MusicSpinoff ofThe Cock...

 

Marcus Stroman Stroman con i Mets nel 2019 Nazionalità  Stati Uniti Altezza 170 cm Peso 81 kg Baseball Ruolo Lanciatore Squadra  New York Yankees CarrieraSquadre di club 2014-2019 Toronto Blue Jays2019, 2021 New York Mets2024 New York YankeesNazionale 2017 Stati Uniti Statistiche Batte destro Lancia destro Basi su ball 288 Strikeout 853 Punti concessi 415 Media PGL 3,63 Inning totali 1 028,1 Salvezze 1 Vittorie 61 Sconfitte 60 Rapporto vittorie 0,504 Palmarès ...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

2011 first-person shooter video game by Codemasters For the 1994 rail shooter video game, see Body Count (video game). 2011 video gameBodycountDeveloper(s)Codemasters Guildford[1]Publisher(s)CodemastersDesigner(s) Steve Watt Stuart Black EngineEGO EnginePlatform(s) PlayStation 3 Xbox 360 ReleaseNA: 30 August 2011AU: 1 September 2011EU: 2 September 2011Genre(s)First-person shooterMode(s)Single-playermultiplayer Bodycount is a 2011 first-person shooter video game for the PlayStation 3 a...

 

إنتاج إعلاميصنف فرعي من الإنتاج السمعي البصري — سينما جزء من صناعة الأفلام يمتهنه  القائمة ... منتج مساعد — منتج أفلام — organizer of film production (en) — مدير إنتاج — ملاحظ سيناريو — صانع أفلام تعديل - تعديل مصدري - تعديل ويكي بيانات الإنتاج الإعلامي مصطلح يشير إلى كل ما يتعلق بمجال ...

Протесты против повышения пенсионного возраста в России Антиреформенный митинг (Москва, 28 июля) Дата с 14 июня по 7 ноября 2018 года (массовые акции); отдельные выступления проходили до конца декабря; продолжились в 2019 году Ключевые даты протестов: • 1 июля 2018• 18 июля 2018• 28-29 ...

 

Плистоанактдр.-греч. Πλειστοάναξ царь Спарты 459/458 год до н. э. — 445 год до н. э. Регент Никомед[англ.] Предшественник Плистарх Преемник Павсаний 427/426 год до н. э. — 409/408 год до н. э. Предшественник Павсаний Преемник Павсаний Рождение по одной версии, в...

 

Municipality in Mexico, MexicoRayónMunicipalityLocation of the municipality in Mexico StateCountry MexicoStateMexico (state)Government • Municipal presidentJosé Luis Robles VázquezElevation2,570 m (8,430 ft)Population (2005) • Total12,748Time zoneUTC-6 (Central Standard Time) • Summer (DST)UTC-5 (Central Daylight Time) Rayón is a municipality located in Toluca Region, the northeastern part of the state of Mexico in Mexico, the munici...

此條目没有列出任何参考或来源。 (2019年1月6日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 浙江民泰商业银行股份有限公司Zhejiang Mintai Commercial Bank Co., Ltd.簡稱浙江民泰商业银行、民泰银行、MTB支付系統行號总行:313345400010总行营业部:313345400028金融許可證機構編碼B0161H233100001统一社会信用代�...

 

Word borrowed from a donor language and incorporated into a recipient language Tofu is an English loanword from Japanese word Tōfu, in which it is itself a loanword from the Chinese word dòufu. Sociolinguistics Key concepts Code-switching Language change Language ideology Language planning Multilingualism Prestige Variation Areas of study Accent Bilingual pun Dialect Diglossia Homophonic translation Macaronic language Phono-semantic matching Register Discourse analysis Language varieties Li...

 

此條目没有列出任何参考或来源。 (2015年6月1日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 奥古斯特·倍倍尔 奥古斯特·费迪南德·倍倍尔(德語:August Ferdinand Bebel,德语发音:[aʊ̯ˈɡʊst ˈfɛʁdinant ˈbeːbl̩];1840年2月22日—1913年8月13日)德国社会民主党领袖,生于科隆多伊茨。1861年加入莱比...

Irish electric utility Electricity Supply BoardCompany typeStatutory corporationIndustryEnergy generationElectricity transmissionElectricity distributionFounded1927; 97 years ago (1927)HeadquartersDublin, IrelandArea servedWorldwideKey peoplePaddy Hayes (CEO)Jerry O’Sullivan (Deputy Chief Executive)ServicesElectricityBandwidth solutionsEngineering consultantsRevenue€3.7bn (2019)Operating income€682m (2019)Total assets€14.1bn (2019)OwnerGovernment of Ireland (95%)Empl...

 

数学者については「ハロルド・スターク (数学者)(英語版)」をご覧ください。 ハロルド・スタークHarold Rainsford Stark 渾名 ベティ生誕 1880年11月12日ペンシルベニア州 ウィルクスバリ死没 (1972-08-21) 1972年8月21日(91歳没)所属組織 アメリカ海軍軍歴 1899 - 1946最終階級 海軍大将指揮 海軍作戦部長ヨーロッパ派遣海軍部隊第12艦隊第3巡洋艦戦隊BB-48 ウェストバージニア艦長...