The relationship between mathematics and physics has been a subject of study of philosophers, mathematicians and physicists since antiquity, and more recently also by historians and educators.[2] Generally considered a relationship of great intimacy,[3]mathematics has been described as "an essential tool for physics"[4] and physics has been described as "a rich source of inspiration and insight in mathematics".[5] Some of the oldest and most discussed themes are about the main differences between the two subjects, their mutual influence, the role of mathematical rigor in physics, and the problem of explaining the effectiveness of mathematics in physics.
In his work Physics, one of the topics treated by Aristotle is about how the study carried out by mathematicians differs from that carried out by physicists.[6] Considerations about mathematics being the language of nature can be found in the ideas of the Pythagoreans: the convictions that "Numbers rule the world" and "All is number",[7][8] and two millennia later were also expressed by Galileo Galilei: "The book of nature is written in the language of mathematics".[9][10]
Historical interplay
Before giving a mathematical proof for the formula for the volume of a sphere, Archimedes used physical reasoning to discover the solution (imagining the balancing of bodies on a scale).[11]Aristotle classified physics and mathematics as theoretical sciences, in contrast to practical sciences (like ethics or politics) and to productive sciences (like medicine or botany).[12]
From the seventeenth century, many of the most important advances in mathematics appeared motivated by the study of physics, and this continued in the following centuries (although in the nineteenth century mathematics started to become increasingly independent from physics).[13][14] The creation and development of calculus were strongly linked to the needs of physics:[15] There was a need for a new mathematical language to deal with the new dynamics that had arisen from the work of scholars such as Galileo Galilei and Isaac Newton.[16] The concept of derivative was needed, Newton did not have the modern concept of limits, and instead employed infinitesimals, which lacked a rigorous foundation at that time.[17] During this period there was little distinction between physics and mathematics;[18] as an example, Newton regarded geometry as a branch of mechanics.[19]
In the 19th century Auguste Comte in his hierarchy of the sciences, placed physics and astronomy as less general and more complex than mathematics, as both depend on it.[22] In 1900, David Hilbert in his 23 problems for the advancement of mathematical science, considered the axiomatization of physics as his sixth problem. The problem remains open.[23]
Despite the close relationship between math and physics, they are not synonyms. In mathematics objects can be defined exactly and logically related, but the object need have no relationship to experimental measurements. In physics, definitions are abstractions or idealizations, approximations adequate when compared to the natural world. In 1960, Georg Rasch noted that no models are ever true, not even Newton's laws, emphasizing that models should not be evaluated based on truth but on their applicability for a given purpose.[citation needed] For example, Newton built a physical model around definitions like his second law of motion based on observations, leading to the development of calculus and highly accurate planetary mechanics, but later this definition was superseded by improved models of mechanics.[27] Mathematics deals with entities whose properties can be known with certainty.[28] According to David Hume, only statements that deal solely with ideas themselves—such as those encountered in mathematics—can be demonstrated to be true with certainty, while any conclusions pertaining to experiences of the real world can only be achieved via "probable reasoning".[29] This leads to a situation that was put by Albert Einstein as "No number of experiments can prove me right; a single experiment can prove me wrong."[30] The ultimate goal in research in pure mathematics are rigorous proofs, while in physics heuristic arguments may sometimes suffice in leading-edge research.[31] In short, the methods and goals of physicists and mathematicians are different.[32] Nonetheless, according to Roland Omnès, the axioms of mathematics are not mere conventions, but have physical origins.[33]
Rigor is indispensable in pure mathematics.[34] But many definitions and arguments found in the physics literature involve concepts and ideas that are not up to the standards of rigor in mathematics.[31][35][36][37]
For example,
Freeman Dyson characterized quantum field theory as having two "faces". The outward face looked at nature and there the predictions of quantum field theory are exceptionally successful. The inward face looked at mathematical foundations and found inconsistency and mystery. The success of the physical theory comes despite its lack of rigorous mathematical backing.[38]: ix [39]: 2
Explain the effectiveness of mathematics in the study of the physical world: "At this point an enigma presents itself which in all ages has agitated inquiring minds. How can it be that mathematics, being after all a product of human thought which is independent of experience, is so admirably appropriate to the objects of reality?" —Albert Einstein, in Geometry and Experience (1921).[40]
Clearly delineate mathematics and physics: For some results or discoveries, it is difficult to say to which area they belong: to the mathematics or to physics.[41]
What is essentially different between doing a physical experiment to see the result and making a mathematical calculation to see the result? (from the Turing–Wittgenstein debate)[46]
Is mathematics invented or discovered? (millennia-old question, raised among others by Mario Livio)[49]
Education
In recent times the two disciplines have most often been taught separately, despite all the interrelations between physics and mathematics.[50] This led some professional mathematicians who were also interested in mathematics education, such as Felix Klein, Richard Courant, Vladimir Arnold and Morris Kline, to strongly advocate teaching mathematics in a way more closely related to the physical sciences.[51][52] The initial courses of mathematics for college students of physics are often taught by mathematicians, despite the differences in "ways of thinking" of physicists and mathematicians about those traditional courses and how they are used in the physics courses classes thereafter.[53]
^Al-Rasasi, Ibrahim (21 June 2004). "All is number"(PDF). King Fahd University of Petroleum and Minerals. Archived from the original(PDF) on 28 December 2014. Retrieved 13 June 2015.
^Shields, Christopher (2023), "Aristotle", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Winter 2023 ed.), Metaphysics Research Lab, Stanford University, retrieved 2024-11-11
^Bourdeau, Michel (2023), "Auguste Comte", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Spring 2023 ed.), Metaphysics Research Lab, Stanford University, retrieved 2024-11-08
^Ernest, Paul (2003) [1991]. The philosophy of mathematics education. Studies in mathematics education (Reprint ed.). New York: Routledge. ISBN978-1-85000-667-1.
^Russell, Paul, ed. (2016). The Oxford Handbook of Hume. Oxford University Press. pp. 34, 94. ISBN978-0-19-049392-9.
^Fundamentals of Physics - Volume 2 - Page 627, by David Halliday, Robert Resnick, Jearl Walker (1993)
^Roland Omnès (2005) Converging Realities: Toward a Common Philosophy of Physics and Mathematics p. 38 and p. 215
^Steven Weinberg, To Explain the World: The Discovery of Modern Science, pp. 9–10.
^Kevin Davey. "Is Mathematical Rigor Necessary in Physics?", The British Journal for the Philosophy of Science, Vol. 54, No. 3 (Sep., 2003), pp. 439–463 https://www.jstor.org/stable/3541794
^Mitra, Asoke N.; Dyson, Freeman J., eds. (2000). Quantum field theory: a twentieth century profile. New Delhi: Hindustan Book Agency [u.a.] ISBN978-81-85931-25-8.
Boniolo, Giovanni; Budinich, Paolo; Trobok, Majda, eds. (2005). The Role of Mathematics in Physical Sciences: Interdisciplinary and Philosophical Aspects. Dordrecht: Springer. ISBN9781402031069.
Feynman, Richard P. (1992). "The Relation of Mathematics to Physics". The Character of Physical Law (Reprint ed.). London: Penguin Books. pp. 35–58. ISBN978-0140175059.
Hardy, G. H. (2005). A Mathematician's Apology(PDF) (First electronic ed.). University of Alberta Mathematical Sciences Society. Archived from the original(PDF) on 9 October 2021. Retrieved 30 May 2014.
Vafa, Cumrun (2000). "On the Future of Mathematics/Physics Interaction". Mathematics: Frontiers and Perspectives. USA: AMS. pp. 321–328. ISBN978-0-8218-2070-4.
Witten, Edward (1986). Physics and Geometry(PDF). Proceedings of the International Conference of Mathematicians. Berkeley, California. pp. 267–303. Archived from the original(PDF) on 2013-12-28. Retrieved 2014-05-27.
Katedral Santiago de VeraguasGereja Katedral Santo Yakobus RasulCatedral de Santiago ApóstolKatedral Santiago de VeraguasLokasiSantiago de VeraguasNegara PanamaDenominasiGereja Katolik RomaArsitekturStatusKatedralStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Santiago de Veraguas Katedral Santo Yakobus Rasul [1] (Spanyol: Catedral de Santiago Apóstolcode: es is deprecated ) juga disebut Katedral Santiago de Veraguas[2] adalah sebuah gereja katedral Katolik yang te...
God of War God of War: Ascension (atau dalam bahasa Polandia God of War: Wstapienie; dalam bahasa Rusia God of War: Восхождение; atau sinonimnya God of War IV[1]) adalah permainan yang dibuat oleh Santa Monica Studios dan dipublikasikan oleh Sony Computer Entertainment Architect (SCEA) bertajuk orang ketiga Petualangan-Aksi (Third Person Adventure-Action) dengan konten untuk Dewasa 17 tahun ke atas (Mature). God of War: Ascension rilis pertama kali di Playstation 3 (PS3) pa...
Artikel ini bukan mengenai bahasa Mandarin Kuno. Cari artikel bahasa Cari berdasarkan kode ISO 639 (Uji coba) Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Bahasa Tionghoa Kuno Tionghoa Arkais Pecahan tulang ramalan tahun k. 1200 SM, bertuliskan: ...己卯庚辰 - 子己丑庚寅 - 戌己亥庚子 - 申己酉庚... - ...己未庚...,Sekarang disimpan di Musée de Mariemont, Belgia. Dituturkan diTiongkok kunoEraDinasti Shang, Dinasti Zhou, Zama...
Cet article est une ébauche concernant le droit français. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Article 88-7 de la Constitution du 4 octobre 1958 Données clés Présentation Pays France Langue(s) officielle(s) Français Type Article de la Constitution Adoption et entrée en vigueur Législature XIIIe législature de la Cinquième République française Gouvernement François Fillon (2e) Promulgation...
كريستوفر أسكيلدسن معلومات شخصية الميلاد 9 يناير 2001 (العمر 23 سنة)أوسلو الطول 1.90 م (6 قدم 3 بوصة) مركز اللعب وسط الجنسية النرويج معلومات النادي النادي الحالي ليتشي(معارًا من سامبدوريا) الرقم 7 مسيرة الشباب سنوات فريق هيمينغ 0000–2018 ستابك المسيرة الاحترافية1 سنوات �...
Aerial tramway in New Mexico, United States Sandia Peak Aerial TramwaySandia Peak Ski AreaNew 2016 tram carOverviewStatusOperationalCharacterRecreationalLocationAlbuquerque, New MexicoCountryUnited StatesCoordinates35°11′26″N 106°28′46″W / 35.19056°N 106.47944°W / 35.19056; -106.47944TerminiAlbuquerqueSandia PeakNo. of stations2OpenMay 7, 1966; 57 years ago (1966-05-07)Websitesandiapeak.comOperationOwnerSandia Peak Ski Co.OperatorSandia Pe...
ميّز عن ملقا. مالقة علم شعار الاسم الرسمي (بالإسبانية: Málaga)[1] الإحداثيات 36°43′00″N 4°25′00″W / 36.716666666667°N 4.4166666666667°W / 36.716666666667; -4.4166666666667 [2] تاريخ التأسيس 1834 تقسيم إداري البلد إسبانيا[3][4] التقسيم الأعلى مالقة عا�...
Joseph Brant Joseph Brant Monster Brant Nascimento março de 1743Território do Ohio Morte 24 de novembro de 1807 (64 anos)Canadá Superior Nacionalidade Mohawk Cidadania Iroqueses Etnia Povo Mohawk Cônjuge Catharine Brant Filho(a)(s) John Brant Irmão(ã)(s) Molly Brant Ocupação Militar e Político Religião Igreja Anglicana Assinatura [[File:|frameless]] [edite no Wikidata] Joseph Brant ou Thayendanegea, (março de 1743 - 24 de novembro de 1807), foi um militar indígena e...
Den här artikeln behöver källhänvisningar för att kunna verifieras. (2024-02) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. Världsmästerskapet i basket för herrar 2023EvenemangsfaktaDatum25 augusti–10 september 2023Värdland Filippinerna Japan IndonesienStadQuezon City, Metro Manila, Bocaue, Okinawa, JakartaArenor5Deltag...
Voce principale: Società Sportiva Dilettantistica Pro Sesto. Associazione Calcio Pro SestoStagione 1989-1990Sport calcio Squadra Pro Sesto Allenatore Gianfranco Motta Presidente Giuseppe Peduzzi Serie C22° (promosso in Serie C1) Coppa ItaliaPrimo turno Maggiori presenzeCampionato: Merlo (34) Miglior marcatoreCampionato: Campistri (6) StadioStadio Breda 1988-1989 1990-1991 Si invita a seguire il modello di voce Questa pagina raccoglie le informazioni riguardanti l'Associazione Calcio P...
Preceded by2003/2004 2004/2005 Succeeded by2005/2006 Snooker world rankings 2004/2005: The professional world rankings for the top 64 snooker players in the 2004–05 season are listed below. This was Chris Small's only season in top 16, and Paul Hunter's only appearance in the top 4. No. 1: Ronnie O'SullivanBorn (1975-12-05) December 5, 1975 (age 48)Sport country EnglandProfessional1992–presentHighest ranking1 No. 2: Mark WilliamsBorn (1975-03-21) March 21, 1975 (age...
In this Spanish name, the first or paternal surname is Hurtado de Mendoza and the second or maternal family name is Manrique. DonGarcía Hurtado de MendozaMarqués de CañeteCaballero de SantiagoRoyal Governor of ChileIn office1557–1561MonarchPhilip IIPreceded byFrancisco de AguirreRodrigo de QuirogaFrancisco de VillagraSucceeded byFrancisco de Villagra8th Viceroy of PeruIn officeJanuary 8, 1590 – July 24, 1596MonarchPhilip IIPreceded byFernando Torres de PortugalSucceede...
Suburb of Paisley, Renfrewshire, Scotland, UK For the album by Stealers Wheel, see Ferguslie Park (album). This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (February 2015) (Learn how and when to remove this message) This article...
Belgisch Congo (donkergroen) naast Belgisch Ruanda-Urundi (lichtgroen), 1935. Standaard van de gouverneur-generaal van Belgisch Congo Dit is een lijst van Europese koloniale bestuurders van het territorium van de onafhankelijke Congostaat en Belgisch-Congo, een gebied dat overeenstemt met de hedendaagse Democratische Republiek Congo. Lijst van koloniale hoofden van Congo Termijn Titularis Opmerkingen Association internationale du Congo 22 april 1884 tot juni 1884 Frederic Goldsmid, administra...
لمعانٍ أخرى، طالع نيو كاستل (توضيح). نيو كاستل الإحداثيات 43°04′20″N 70°42′58″W / 43.072222222222°N 70.716111111111°W / 43.072222222222; -70.716111111111 [1] تاريخ التأسيس 1693 تقسيم إداري البلد الولايات المتحدة[2] التقسيم الأعلى مقاطعة روكينغهام خصائص جغرافية...
Parliamentary election held in Scotland 1999 Scottish Parliament election 6 May 1999 (1999-05-06) 2003 → elected members →All 129 seats to the Scottish Parliament 65 seats were needed for a majorityTurnoutConstituency - 58.4% Regional - 58.3% First party Second party Third party Leader Donald Dewar Alex Salmond David McLetchie Party Labour SNP Conservative Leader's seat Glasgow Anniesland Banff and Buchan Lothians Seats wo...
Species of virus Andes orthohantavirus Virus classification (unranked): Virus Realm: Riboviria Kingdom: Orthornavirae Phylum: Negarnaviricota Class: Ellioviricetes Order: Bunyavirales Family: Hantaviridae Genus: Orthohantavirus Species: Andes orthohantavirus Synonyms[1] Andes hantavirus Andes virus Andes orthohantavirus (ANDV), a species of Orthohantavirus, is a major causative agent of hantavirus cardiopulmonary syndrome (HCPS) and hantavirus pulmonary syndrome (HPS) in South America...
Coldest recorded winter in Europe For other Great Frosts, see River Thames frost fairs. Great Frost of 17091708/1709 winter temperature anomaly with respect to 1971–2000 climatologyAlso known asLe Grand Hiver Le lagon gelé en 1709, by Gabriele Bella, part of a lagoon which froze over in 1709, Venice, Italy The Great Frost, as it was known in England, or Le Grand Hiver (The Great Winter), as it was known in France, was an extraordinarily cold winter in Europe in 1708–1709,[1] and ...