Observable

In physics, an observable is a physical property or physical quantity that can be measured. In classical mechanics, an observable is a real-valued "function" on the set of all possible system states, e.g., position and momentum. In quantum mechanics, an observable is an operator, or gauge, where the property of the quantum state can be determined by some sequence of operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value.

Physically meaningful observables must also satisfy transformation laws that relate observations performed by different observers in different frames of reference. These transformation laws are automorphisms of the state space, that is bijective transformations that preserve certain mathematical properties of the space in question.

Quantum mechanics

In quantum mechanics, observables manifest as self-adjoint operators on a separable complex Hilbert space representing the quantum state space.[1] Observables assign values to outcomes of particular measurements, corresponding to the eigenvalue of the operator. If these outcomes represent physically allowable states (i.e. those that belong to the Hilbert space) the eigenvalues are real; however, the converse is not necessarily true.[2][3][4] As a consequence, only certain measurements can determine the value of an observable for some state of a quantum system. In classical mechanics, any measurement can be made to determine the value of an observable.

The relation between the state of a quantum system and the value of an observable requires some linear algebra for its description. In the mathematical formulation of quantum mechanics, up to a phase constant, pure states are given by non-zero vectors in a Hilbert space V. Two vectors v and w are considered to specify the same state if and only if for some non-zero . Observables are given by self-adjoint operators on V. Not every self-adjoint operator corresponds to a physically meaningful observable.[5][6][7][8] Also, not all physical observables are associated with non-trivial self-adjoint operators. For example, in quantum theory, mass appears as a parameter in the Hamiltonian, not as a non-trivial operator.[9]

In the case of transformation laws in quantum mechanics, the requisite automorphisms are unitary (or antiunitary) linear transformations of the Hilbert space V. Under Galilean relativity or special relativity, the mathematics of frames of reference is particularly simple, considerably restricting the set of physically meaningful observables.

In quantum mechanics, measurement of observables exhibits some seemingly unintuitive properties. Specifically, if a system is in a state described by a vector in a Hilbert space, the measurement process affects the state in a non-deterministic but statistically predictable way. In particular, after a measurement is applied, the state description by a single vector may be destroyed, being replaced by a statistical ensemble. The irreversible nature of measurement operations in quantum physics is sometimes referred to as the measurement problem and is described mathematically by quantum operations. By the structure of quantum operations, this description is mathematically equivalent to that offered by the relative state interpretation where the original system is regarded as a subsystem of a larger system and the state of the original system is given by the partial trace of the state of the larger system.

In quantum mechanics, dynamical variables such as position, translational (linear) momentum, orbital angular momentum, spin, and total angular momentum are each associated with a self-adjoint operator that acts on the state of the quantum system. The eigenvalues of operator correspond to the possible values that the dynamical variable can be observed as having. For example, suppose is an eigenket (eigenvector) of the observable , with eigenvalue , and exists in a Hilbert space. Then

This eigenket equation says that if a measurement of the observable is made while the system of interest is in the state , then the observed value of that particular measurement must return the eigenvalue with certainty. However, if the system of interest is in the general state (and and are unit vectors, and the eigenspace of is one-dimensional), then the eigenvalue is returned with probability , by the Born rule.

Compatible and incompatible observables in quantum mechanics

A crucial difference between classical quantities and quantum mechanical observables is that some pairs of quantum observables may not be simultaneously measurable, a property referred to as complementarity. This is mathematically expressed by non-commutativity of their corresponding operators, to the effect that the commutator

This inequality expresses a dependence of measurement results on the order in which measurements of observables and are performed. A measurement of alters the quantum state in a way that is incompatible with the subsequent measurement of and vice versa.

Observables corresponding to commuting operators are called compatible observables. For example, momentum along say the and axis are compatible. Observables corresponding to non-commuting operators are called incompatible observables or complementary variables. For example, the position and momentum along the same axis are incompatible.[10]: 155 

Incompatible observables cannot have a complete set of common eigenfunctions. Note that there can be some simultaneous eigenvectors of and , but not enough in number to constitute a complete basis.[11][12]

See also

References

  1. ^ Teschl 2014, pp. 65–66.
  2. ^ See page 20 of Lecture notes 1 by Robert Littlejohn Archived 2023-08-29 at the Wayback Machine for a mathematical discussion using the momentum operator as specific example.
  3. ^ de la Madrid Modino 2001, pp. 95–97.
  4. ^ Ballentine, Leslie (2015). Quantum Mechanics: A Modern Development (2 ed.). World Scientific. p. 49. ISBN 978-9814578578.
  5. ^ Isham, Christopher (1995). Lectures On Quantum Theory: Mathematical And Structural Foundations. World Scientific. pp. 87–88. ISBN 191129802X.
  6. ^ Mackey, George Whitelaw (1963), Mathematical Foundations of Quantum Mechanics, Dover Books on Mathematics, New York: Dover Publications, ISBN 978-0-486-43517-6
  7. ^ Emch, Gerard G. (1972), Algebraic methods in statistical mechanics and quantum field theory, Wiley-Interscience, ISBN 978-0-471-23900-0
  8. ^ "Not all self-adjoint operators are observables?". Physics Stack Exchange. Retrieved 11 February 2022.
  9. ^ Isham, Christopher (1995). Lectures On Quantum Theory: Mathematical And Structural Foundations. World Scientific. pp. 87–88. ISBN 191129802X.
  10. ^ Messiah, Albert (1966). Quantum Mechanics. North Holland, John Wiley & Sons. ISBN 0486409244.
  11. ^ Griffiths, David J. (2017). Introduction to Quantum Mechanics. Cambridge University Press. p. 111. ISBN 978-1-107-17986-8.
  12. ^ Cohen-Tannoudji, Diu & Laloë 2019, p. 232.

Further reading

Read other articles:

Sugandhi KartosubrotoInformasi pribadiLahir(1923-01-03)3 Januari 1923Blitar, Jawa TimurMeninggal25 Juli 1991(1991-07-25) (umur 68)JakartaSuami/istriNy. Mien SugandhiAnak1KerabatLetjen TNI Soeyono (menantu)Alma materPETA (1945)PekerjaanTNIKarier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1945-1979Pangkat Mayor Jenderal TNISatuanInfanteriSunting kotak info • L • B Mayor Jenderal TNI (Purn.) Sugandhi Kartosubroto (03 Januari 1923 – ...

Ogden Hammond (undatiert) Ogden Haggerty Hammond (* 13. Oktober 1869 in Louisville, Kentucky; † 29. Oktober 1956 in Bernardsville, New Jersey) war ein US-amerikanischer republikanischer Kommunalpolitiker, der Direktor der First Bank of New Jersey, Abgeordneter des Staates New Jersey und von 1925 bis 1929 Botschafter der Vereinigten Staaten in Spanien war. Inhaltsverzeichnis 1 Herkunft 2 Werdegang 3 Familie 4 Weblinks Herkunft Hammond war das zweite von sechs Kindern des Lokalpolitikers...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) سيدي خليف تقسيم إداري  البلد تونس  تعديل مصدري - تعديل   سِيدِي خَلِيف قرية تقع بولاية سيدي بوزيد من �...

Wappen Deutschlandkarte 52.20305555555610.7075160Koordinaten: 52° 12′ N, 10° 42′ O Basisdaten Bundesland: Niedersachsen Landkreis: Wolfenbüttel Samtgemeinde: Sickte Höhe: 160 m ü. NHN Fläche: 13,39 km2 Einwohner: 859 (31. Dez. 2022)[1] Bevölkerungsdichte: 64 Einwohner je km2 Postleitzahl: 38173 Vorwahl: 05305 Kfz-Kennzeichen: WF Gemeindeschlüssel: 03 1 58 012 Adresse der Verbandsverwaltung: Am Kamp 123817...

2007 studio album by Our Heart's HeroOur Heart's HeroStudio album by Our Heart's HeroReleasedSeptember 18, 2007GenreCCM, pop rockLength39:04LabelGoteeOur Heart's Hero chronology Our Heart's Hero(2006) Our Heart's Hero(2007) Professional ratingsReview scoresSourceRatingChristianity Today[1]Cross Rhythms[2]Jesus Freak Hideout[3] Our Heart's Hero is the self-titled debut album from Christian pop rock band Our Heart's Hero. It was released on May 18, 2007, through ...

Pergaminos municipales. Archivo Histórico de la Ciudad de Barcelona. Año 1326 Los Pergaminos municipales del Archivo Histórico de la Ciudad de Barcelona, llamados así para distinguirlos de otros del Archivo Histórico pero que tienen una filiación diferente, como los Pergaminos patrimoniales o los Pergaminos gremiales, procedentes, respectivamente, de archivos ajenos a la institución municipal (archivos privados y familiares) y de corporaciones profesionales o de asociaciones asistencia...

  لمعانٍ أخرى، طالع رشيد (توضيح). بندقية رشيد بندقية رشيد النوع بندقية نصف آلية بلد الأصل الجمهورية العربية المتحدة تاريخ الاستخدام المستخدمون  مصر تاريخ الصنع صمم 1960 المصنع مصنع 54 الحربى (تغير اسمه إلى: المعادي للصناعات الهندسية الكمية المصنوعة أكثر من 10,000 المواصف�...

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menamba...

Defunct ESPN streaming media outlet ESPN Networks redirects here. For a list of ESPN networks, see ESPN Inc. WatchESPNType of siteSports broadcastingOwnerESPN Inc.RevenueunknownURLwww.espn.com/watch/LaunchedOctober 25, 2010; 13 years ago (2010-10-25)Current statusDefunct (selected territories); functionality transferred to ESPN.com, ESPN app, ESPN+ and ESPN Player WatchESPN was a branding of the Internet television website and mobile application operated by ESPN Inc., a...

Railway station in Telangana, India This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Warangal railway station – news · newspapers · books · scholar · JSTOR ...

North Macedonia beauty pageant title Miss Grand North MacedoniaFormation2013TypeBeauty pageantHeadquartersSkopjeLocationNorth MacedoniaMembership Miss Grand InternationalOfficial language MacedonianNational directorDunavka TrifunovskaParent organizationCrnokrak Fashion Studio (2013)D+D Fashion Woman (2015) Dunavka Trifunovska, Miss Grand Macedonia 2015 Miss Grand North Macedonia is a national female beauty pageant title awarded to Macedonian representatives competing at the Miss Grand Interna...

International treaty for the conservation and sustainable utilization of wetlands This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (October 2017) (Learn how and when to remove this template message) Ramsar ConventionRamsar Convention on Wetlands of International Importance Especially as Waterfowl HabitatRamsar logoSigned2 February 1971LocationRamsar, IranEffect...

مبنى القاووشمعلومات عامةالبلد  السعوديةالمدينة الوجهأبرز الأحداثبداية التشييد 1276 هـ، 1859متعديل - تعديل مصدري مبنى القاووش هو مبنى تاريخي في مدينة الوجه بمنطقة تبوك شمال المملكة العربية السعودية.[1] التاريخ يعود بناء مبنى القاووش إلى أكثر من 200 عام في فترة مقاربة لبن�...

Second engineerGeneralOther namesFirst assistant engineerDepartmentEngine departmentReports toChief engineerLicensedYesDutiesSupervising the daily maintenance and operation of the engine departmentRequirementsAdministration and logistics training.WatchstandingWatchstanderDepends on shipboard manning requirementsWatch (at sea)Varies (0400-0800, 1600-2000)Watch (in port)Varies (0800-1700) A second engineer or first assistant engineer is a licensed member of the engineering department on a merch...

2002 greatest hits album by the Rolling StonesForty LicksGreatest hits album by the Rolling StonesReleased30 September 2002Recorded10 January 1964 – 7 June 2002GenreRockLength155:52LabelVirginABKCODeccaProducerAndrew Loog OldhamThe Rolling StonesJimmy MillerChris KimseyDon WasDust BrothersThe Rolling Stones chronology No Security(1998) Forty Licks(2002) Singles 1963–1965(2004) Singles from Forty Licks Don't StopReleased: 30 September 2002 Professional ratingsReview scoresSourceRat...

Questa voce sull'argomento centri abitati dell'Oblast' di Pskov è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Idricainsediamento di tipo urbanoИ́дрица LocalizzazioneStato Russia Circondario federaleNordoccidentale Soggetto federale Pskov RajonSebežskij TerritorioCoordinate56°19′N 28°53′E / 56.316667°N 28.883333°E56.316667; 28.883333 (Idrica)Coordinate: 56°19′N 28°53′E / 56.316667°N 28...

1860 treaty between Great Britain and Nicaragua Treaty of ManaguaTypeBilateral treatySignedJanuary 28, 1860 (1860-01-28)ExpirationApril 19, 1905 (1905-04-19)Parties  United Kingdom  Nicaragua LanguagesEnglishSpanish The Treaty of Managua, also known as the Zeledon-Wyke treaty, was an 1860 agreement between the United Kingdom and Nicaragua, in which Britain recognised Nicaraguan sovereignty over the Kingdom of Mosquitia, but reserved, on the basis of his...

Odfjell Drilling Ltd For the oceanological term, see Deep sea. Odfjell Drilling Ltd.TypePublic companyTraded asOSE: ODL.OLIndustryOilfield servicesFounded1973; 50 years ago (1973)HeadquartersBergenStavangerAberdeenNorwayKey peopleSimen Lieungh (CEO)ServicesOffshore drilling servicesRevenue US$662 million (2017)Net income US$35 million (2017)Total assets US$2.128 billion (2018)Total equity US$769 million (2018)Number of employees2,500Websitewww.odfjelldrilling.comFootnotes...

اختبار رينيه من أنواع اختبار السمع  ن.ف.م.ط. D006320 تعديل مصدري - تعديل   يستخدم اختبار رينيه للكشف عن فقدان السمع في إحدى الأذنين.[1] ويُقارن هذا الاختبار بين سماع الأصوات المنقولة من طريق الهواء، وتلك المنقولة من طريق النقل العظمي عبر العظم الخشائي - القسم الخشائي من ا...

Badminton SwedenSvenska BadmintonförbundetFormation9 April 1936 (1936-04-09)TypeSports governing bodyHeadquartersStockholmLocationSwedenOfficial language SwedishPresidentTommy Theorin[1]AffiliationsBEC, BWFWebsitewww.badminton.nu Badminton Sweden (Swedish: Svenska Badmintonförbundet) is the governing body for the sport of badminton in Sweden. The organization was established in 1936, and hosts the annual Swedish Open tournament. It has been affiliated with Badminton W...