Nitridophosphate

A nitridophosphate is an inorganic compound that contains nitrogen bound to a phosphorus atom, considered as replacing oxygen in a phosphate.

Anions include NPN PN3 P3N6. Related compounds include the oxonitridophosphates[1] imidonitridophosphates,[2] nitridoborophosphates,[3] and nitridosilicatephosphates.[4] By changing the phosphorus, related materials include nitridovanadates and nitridorhenates.[5]

Nitridophosphate compounds include elements from the alkali metals, alkaline earths, first row transition metals, rare earth elements, and some other main group elements.[6]

Characteristics

Nitridophosphate compounds nearly always contain phosphorus in tetrahedral configuration. They can be characterised by the condensation index K which is the ratio of numbers of phosphorus tetrahedral centres to nitrogen vertices. As more nitrogen atoms are shared between phosphorus, condensation increases. The maximum is for P3N5 which no longer has any capacity for cations. For K of 1/2 three dimensional frameworks are produced. For 2/7 or 3/7 layered arrangements of tetrahedra are produced. For 1/3 chains or ring structures are prominent. 1/4 is for uncondensed PN4 compounds. Tow PN4 tetrahedra can also share an edge: P2N6, as the P-N bond is not very polarised, so there is less electrostatic repulsion.[6] Uncondensed compounds are sensitive to air and water but highly condensed compounds are water or acid stable.[6]

Nitridophosphate compounds are usually insulators and are transparent to light.[6]

Formation

Heating P3N5 with a metal nitride at gigapascal pressure and a temperatures of over 1000 °C forms nitridophosphates. P3N5 decomposes over 850°C at ambient pressure. However there are a few nitridophosphates that do no require such high temperatures to form.[7][8]

Heating ammonia under pressure with red phosphorus, and metals, metal nitrides or metal azides is a method called ammonothermal synthesis.[9]

Use

Nitridophosphates are under investigation as luminescent materials, that can covert blue light into red.[8]

List

formula system space group unit cell volume density comment reference
HPN2 tetragonal I42d a = 4.6182 c = 7.0204 Z = 4 [10][11]
HPN3 [12]
β-HP4N7 monoclinic C2/c a = 12.873 b = 4.6587 c = 8.3222 β = 102.351° Z = 4 487.55 3.037 colourless [13]
γ-HP4N7 monoclinic C2/c a=6.82983 b=7.24537 c=8.96504 β = 111.5557° Z = 4 412.604 3.572 high pressure form > 12 GPa; P in trigonal bipyramid [14]
LiPN2 [12]
Li7PN4 cubic P43n a=9.3648 Z=8 tetrahedra [12][15]
β-Li10P4N10 trigonal a=8.71929 c=21.4656 Z=6 1413.3 2.35015 colourless; tetrahedron of 4 tetrahedra [12]
α-Li10P4N10 cubic >80°C [7]
Li5P2N5 monoclinic C2/c a=14.770 b=17.850 c=4.860 β =93.11° layered, high pressure [16]
Li4PN3 orthorhombic Pccn a=9.6597 b=11.8392 c=4.8674 chains [17]
Li12P3N9 monoclinic Cc a=12.094 b=7.649 c=9.711 β=90.53° ring of 3 tetrahedra [12][17]
Li18P6N16 monoclinic P1 a=5.4263 b=7.5354 c=9.8584 α=108.481° β=99.288° γ=104.996° Z=1 355.8 2.496 tricyclic [18]
Li13P4N10Cl3 cubic Fm3m a=13.Z=8 Z=8 2704.27 2.2624 colourless; [7]
Li13P4N10Br3 cubic Fm3m a=14.1096 Z=8 2809.0 2.8088 colourless; [7]
LiP4N7 orthorhombic P212121 a=4.5846 b=8.009 c=13.252 Z=4 485.8 3.130 air stable; grey [19]
Li1.34P6N9.34(NH)1.66 monoclinic P1 a=4.691 b=7.024 c=12.736, α=87.73° β=80.28° γ=70.55° Z=2 390.0 2.988 air stable; grey [19]
BeP2N4 cubic Fd3 a=7.1948 Z=8 372.44 bulk modulus 325 GPa [20]
BP3N6 monoclinic P21/c a=5.027 b=4.5306 c=17.332 β=106.387° Z=4 378.7 3.293 [21]
Li47B3P14N42 trigonal P3c1 a=19.3036 c=18.0200 [22]
NaPN2 [23]
NaP4N7 [19]
Na3P6N11 [19]
Mg2PN3 orthorhombic Cmc21 a=9.723 b=5.6562 c=4.7083 band gap 5.0 eV [12][24]
MgP8N14 orthorhombic a=8.364 b=5.0214 c=23.196 974.3 3.192 [25]
AlP6N11 monoclinic Cm a=4.935 b=8.161 c=9.040 β=98.63° grey; layered; thermal expansion 16.0 ppm/K [26]
Ca2PN3 orthorhombic Cmca a = 5.1914 b =10.3160 c = 11.289 Z = 8 beige; chains [12]
CaP8N14 [25]
Sc5P12N23O3 tetragonal I41/acd a=12.3598 c=24.0151 Z=8 3668.6 3.500 grey [27]
TiP4N8 orthorhombic Pmn21 a=7.6065 b=4.6332 c=7.8601 Z=2 227.01 3.403 [28]
TiP4N8 orthorhombic Pmn21 a=22.9196 b=4.5880 c=8.0970 Z=6 851.44 3.322 [28]
Ti5P12N24O2 tetragonal I41/acd a=a=12.1214 c=23.8458 Z=8 3503.6 3.713 black; Ti3+ & Ti4+ [27]
MnP2N4 hexagonal P6322 a = 16.5543 c = 7.5058 1781.3 [27][29]
FeP8N14 orthorhombic Cmca a=8.2693 = 5.10147 c=23.0776 air stable [30]
CoP8N14 orthorhombic Cmca a=8.25183 b=5.10337 c=22.9675 air stable [30]
NiP8N14 orthorhombic Cmca a=8.23105 b=5.08252 c=22.8516 air stable [30]
CuPN2 tetragonal I42d a = 4.5029 c = 7.6157 154.42 band gap 1.67 eV [23]
Zn2PN3 orthorhombic Cmc21 a = 9.37847 b = 5.47696 c = 4.92396 Z = 4 colourless [31][32]
Zn8P12N24O2 tetragonal I43m a=8.24239 c=8.24239 [33]
Zn8P12N24S2 [33]
Zn8P12N24Se2 [33]
Zn8P12N24Te2 [33]
Zn7P12N24Cl2 sodalite structure [12]
GeP2N4 orthorhombic Pna21 a=9.547 b=7.542 c=4.6941 Z=4 dark grey [34]
Sr3P3N7 monoclinic P2/c a=6.882 b=7.416 c=7.036 β=104.96° Z=2 346.9 4.345 white; decompose in moist air; band gap 4.4 eV [35]
Sr2SiP2N6 orthorhombic C2221 a = 6.0849 b = 8.8203 c = 10.2500 [36]
SrP8N14 [10]
SrP3N5NH monoclinic P21/c a=5.01774 b=8.16912 c=12.70193 β=101.7848° Z=4 [2]
SrH4P6N12 [10]
Sr5Si2P6N16 orthorhombic Pbam a = 9.9136 b = 17.5676 c = 8.3968 [36]
SrAl5P4N10O2F3 tetragonal I4m2 a=11.1685 c=7.8485 Z=2 978.99 3.905 [37]
Sr3P5N10Cl orthorhombic Pnma a=12.240 b=12.953 c=13.427 Z=8 [38]
Sr3P5N10Br orthorhombic Pnma a=12.297 b=12.990 c=13.458 Z=8 [38]
AgPN2 [39]
CdP2N4 hexagonal P6322 a = 16.7197 c = 7.6428 1850.3 [27][29]
InP6N11 grey; layered [26]
BaP2N4 [25]
Ba3P5N10Cl orthorhombic Pnma [38]
Ba3P5N10Br orthorhombic Pnma [38]
BaSr2P6N12 cubic Pa3 a=10.0639 Z=4 1019.3 4.343 [25]
La2P3N7 monoclinic C2/c [35][40]
Ce2P3N7 monoclinic C2/c [35][40]
Ce4Li3P18N35 hexagonal P63/m a=13.9318 c=8.1355 [41]
Pr2P3N7 monoclinic C2/c a = 7.8006 b = 10.2221 c = 7.7798 β = 111.299° Z = 4 [35][40]
Nd2P3N7 P421m [35][40]
LiNdP4N8 orthorhombic Pnma a=8.7305 b=7.8783 c=9.0881 [42]
Sm2P3N7 P421m [35][40]
Eu2P3N7 P421m [35][40]
Ho2P3N7 P421m a = 7.3589 c = 4.9986 Z = 2 [35][40]
Ho3[PN4]O tetragonal I4/mcm a = 6.36112 c = 10.5571 Z = 4 [43]
Yb2P3N7 P421m [35][40]
Hf9−xP24N52−4xO4x (x≈1.84) I41/acd a=12.4443 c=23.7674 Z=4 3680.6 [44]

References

  1. ^ Pritzl, Reinhard M.; Prinz, Nina; Strobel, Philipp; Schmidt, Peter J.; Johrendt, Dirk; Schnick, Wolfgang (20 July 2023). "From Framework to Layers Driven by Pressure – The Monophyllo-Oxonitridophosphate β-MgSrP 3 N 5 O 2 and Comparison to its α-Polymorph". Chemistry – A European Journal. 29 (41). doi:10.1002/chem.202301218.
  2. ^ a b Vogel, Sebastian; Schnick, Wolfgang (2018-09-20). "SrP 3 N 5 NH: A Framework-Type Imidonitridophosphate Featuring Structure-Directing Hydrogen Bonds". Chemistry – A European Journal. 24 (53): 14275–14281. doi:10.1002/chem.201803210. ISSN 0947-6539. PMID 30004596. S2CID 51616212.
  3. ^ Bertschler, Eva-Maria; Bräuniger, Thomas; Dietrich, Christian; Janek, Jürgen; Schnick, Wolfgang (18 April 2017). "Li 47 B 3 P 14 N 42 —A Lithium Nitridoborophosphate with [P 3 N 9 ] 12− , [P 4 N 10 ] 10− , and the Unprecedented [B 3 P 3 N 13 ] 15− Ion". Angewandte Chemie International Edition. 56 (17): 4806–4809. doi:10.1002/anie.201701084. PMID 28370871.
  4. ^ Eisenburger, Lucien; Oeckler, Oliver; Schnick, Wolfgang (March 2021). "High-Pressure High-Temperature Synthesis of Mixed Nitridosilicatephosphates and Luminescence of AE SiP 3 N 7 :Eu 2+ ( AE =Sr, Ba)". Chemistry – A European Journal. 27 (13): 4461–4465. doi:10.1002/chem.202005495. ISSN 0947-6539. PMC 7986791. PMID 33464635.
  5. ^ Chaushli, Azad; Jacobs, Herbert; Weisser, Ulrike; Strähle, Joachim (September 2000). "Li5ReN4, ein Lithium–Nitridorhenat(VII) mit anti-Flußspat-Überstruktur". Zeitschrift für anorganische und allgemeine Chemie. 626 (9): 1909–1914. doi:10.1002/1521-3749(200009)626:9<1909::AID-ZAAC1909>3.0.CO;2-T.
  6. ^ a b c d Kloß, Simon D.; Schnick, Wolfgang (11 June 2019). "Nitridophosphates: A Success Story of Nitride Synthesis". Angewandte Chemie International Edition. 58 (24): 7933–7944. doi:10.1002/anie.201812791.
  7. ^ a b c d Bertschler, Eva-Maria; Dietrich, Christian; Leichtweiß, Thomas; Janek, Jürgen; Schnick, Wolfgang (2018-01-02). "Li + Ion Conductors with Adamantane-Type Nitridophosphate Anions β-Li 10 P 4 N 10 and Li 13 P 4 N 10 X 3 with X =Cl, Br". Chemistry – A European Journal. 24 (1): 196–205. doi:10.1002/chem.201704305. ISSN 0947-6539. PMID 29027753.
  8. ^ a b Wendl, Sebastian; Mardazad, Sara; Strobel, Philipp; Schmidt, Peter J.; Schnick, Wolfgang (5 October 2020). "HIP to be Square: Simplifying Nitridophosphate Synthesis in a Hot Isostatic Press". Angewandte Chemie. 132 (41): 18397–18400. Bibcode:2020AngCh.13218397W. doi:10.1002/ange.202008570. PMC 7590079.
  9. ^ Mallmann, Mathias; Wendl, Sebastian; Schnick, Wolfgang (11 February 2020). "Crystalline Nitridophosphates by Ammonothermal Synthesis". Chemistry – A European Journal. 26 (9): 2067–2072. doi:10.1002/chem.201905227. PMC 7027869. PMID 31909508.
  10. ^ a b c Wendl, Sebastian; Schnick, Wolfgang (2018-10-22). "SrH 4 P 6 N 12 and SrP 8 N 14 : Insights into the Condensation Mechanism of Nitridophosphates under High Pressure". Chemistry – A European Journal. 24 (59): 15889–15896. doi:10.1002/chem.201803125. ISSN 0947-6539. PMID 30136742. S2CID 52066954.
  11. ^ Schnick, W.; Lücke, J. (April 1992). "Darstellung, Kristallstruktur und IR-spektroskopische Untersuchung von Phosphor(V)-nitrid-imid, HPN 2". Zeitschrift für anorganische und allgemeine Chemie. 610 (4): 121–126. doi:10.1002/zaac.19926100120. ISSN 0044-2313.
  12. ^ a b c d e f g h Schnick, Wolfgang; Schultz-Coulon, Verena (February 1993). "Ca 2 PN 3 : A New Phosphorus( V ) Nitride with One-Dimensional Infinite Chains of Corner-Sharing PN 4 Tetrahedra". Angewandte Chemie International Edition in English. 32 (2): 280–281. doi:10.1002/anie.199302801. ISSN 0570-0833.
  13. ^ Baumann, Dominik; Schnick, Wolfgang (2014-08-04). "High-Pressure Polymorph of Phosphorus Nitride Imide HP 4 N 7 Representing a New Framework Topology". Inorganic Chemistry. 53 (15): 7977–7982. doi:10.1021/ic500767f. ISSN 0020-1669.
  14. ^ Baumann, Dominik; Schnick, Wolfgang (2014-12-22). "Pentacoordinate Phosphorus in a High-Pressure Polymorph of Phosphorus Nitride Imide P 4 N 6 (NH)". Angewandte Chemie International Edition. 53 (52): 14490–14493. doi:10.1002/anie.201406086. ISSN 1433-7851. PMID 25124527.
  15. ^ Schnick, Wolfgang; Luecke, Jan (July 1990). "Synthesis and crystal structure of lithium phosphorus nitride Li7PN4: The first compound containing isolated PN4-tetrahedra". Journal of Solid State Chemistry. 87 (1): 101–106. doi:10.1016/0022-4596(90)90070-E.
  16. ^ Bertschler, Eva-Maria; Niklaus, Robin; Schnick, Wolfgang (2018-01-12). "Reversible Polymerization of Adamantane-type [P 4 N 10 ] 10− Anions to Honeycomb-type [P 2 N 5 ] 5− Layers under High-Pressure". Chemistry – A European Journal. 24 (3): 736–742. doi:10.1002/chem.201704975. ISSN 0947-6539. PMID 29136304.
  17. ^ a b Bertschler, Eva-Maria; Niklaus, Robin; Schnick, Wolfgang (2017-07-18). "Li 12 P 3 N 9 with Non-Condensed [P 3 N 9 ] 12− -Rings and its High-Pressure Polymorph Li 4 PN 3 with Infinite Chains of PN 4 -Tetrahedra". Chemistry – A European Journal. 23 (40): 9592–9599. doi:10.1002/chem.201700979. ISSN 0947-6539. PMID 28543928.
  18. ^ Bertschler, Eva-Maria; Dietrich, Christian; Janek, Jürgen; Schnick, Wolfgang (2017-02-10). "Li 18 P 6 N 16 —A Lithium Nitridophosphate with Unprecedented Tricyclic [P 6 N 16 ] 18− Ions". Chemistry – A European Journal. 23 (9): 2185–2191. doi:10.1002/chem.201605316. ISSN 0947-6539. PMID 27977044.
  19. ^ a b c d Schneider, Stefanie; Klenk, Sebastian; Kloss, Simon D.; Schnick, Wolfgang (2024-01-11). "Please Mind the Gap: Highly Condensed P–N Networks in LiP 4 N 7 and Li 3− x P 6 N 11− x (NH) x". Chemistry – A European Journal. 30 (3): e202303251. doi:10.1002/chem.202303251. ISSN 0947-6539. PMID 37874966.
  20. ^ Vogel, Sebastian; Bykov, Maxim; Bykova, Elena; Wendl, Sebastian; Kloß, Simon D.; Pakhomova, Anna; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Schnick, Wolfgang (2020-02-10). "Nitride Spinel: An Ultraincompressible High-Pressure Form of BeP 2 N 4". Angewandte Chemie. 132 (7): 2752–2756. Bibcode:2020AngCh.132.2752V. doi:10.1002/ange.201910998. ISSN 0044-8249.
  21. ^ Vogel, Sebastian; Buda, Amalina T.; Schnick, Wolfgang (October 2018). "United in Nitride: The Highly Condensed Boron Phosphorus Nitride BP 3 N 6". Angewandte Chemie International Edition. 57 (40): 13202–13205. doi:10.1002/anie.201808111. ISSN 1433-7851. PMID 30088854. S2CID 51934156.
  22. ^ Bertschler, Eva-Maria; Bräuniger, Thomas; Dietrich, Christian; Janek, Jürgen; Schnick, Wolfgang (2017-04-18). "Li 47 B 3 P 14 N 42 —A Lithium Nitridoborophosphate with [P 3 N 9 ] 12− , [P 4 N 10 ] 10− , and the Unprecedented [B 3 P 3 N 13 ] 15− Ion". Angewandte Chemie International Edition. 56 (17): 4806–4809. doi:10.1002/anie.201701084. ISSN 1433-7851. PMID 28370871.
  23. ^ a b Pucher, Florian J.; Hummel, Franziska; Schnick, Wolfgang (April 2015). "CuPN 2 : Synthesis, Crystal Structure, and Electronic Properties". European Journal of Inorganic Chemistry. 2015 (11): 1886–1891. doi:10.1002/ejic.201500009. ISSN 1434-1948.
  24. ^ Mallmann, Mathias; Maak, Christian; Niklaus, Robin; Schnick, Wolfgang (2018-09-18). "Ammonothermal Synthesis, Optical Properties, and DFT Calculations of Mg 2 PN 3 and Zn 2 PN 3". Chemistry – A European Journal. 24 (52): 13963–13970. doi:10.1002/chem.201803293. ISSN 0947-6539. PMID 30044518. S2CID 51715277.
  25. ^ a b c d Wendl, Sebastian; Seidl, Lisa; Schüler, Patrick; Schnick, Wolfgang (2020-12-21). "Post-Synthetic Modification: Systematic Study on a Simple Access to Nitridophosphates". Angewandte Chemie International Edition. 59 (52): 23579–23582. doi:10.1002/anie.202011835. ISSN 1433-7851. PMC 7756662. PMID 32941701.
  26. ^ a b Ambach, Sebastian J.; Pointner, Monika; Falkai, Sophie; Paulmann, Carsten; Oeckler, Oliver; Schnick, Wolfgang (2023-06-12). "Combining M N 6 Octahedra and PN 5 Trigonal Bipyramids in the Mica-like Nitridophosphates M P 6 N 11 ( M =Al, In)". Angewandte Chemie. 135 (24). Bibcode:2023AngCh.135E3580A. doi:10.1002/ange.202303580. ISSN 0044-8249.
  27. ^ a b c d Eisenburger, Lucien; Weippert, Valentin; Oeckler, Oliver; Schnick, Wolfgang (2021-10-13). "High-Pressure Synthesis of Sc 5 P 12 N 23 O 3 and Ti 5 P 12 N 24 O 2 by Activation of the Binary Nitrides ScN and TiN with NH 4 F". Chemistry – A European Journal. 27 (57): 14184–14188. doi:10.1002/chem.202101858. ISSN 0947-6539. PMC 8596507. PMID 34407247.
  28. ^ a b Eisenburger, Lucien; Weippert, Valentin; Paulmann, Carsten; Johrendt, Dirk; Oeckler, Oliver; Schnick, Wolfgang (2022-05-02). "Discovery of Two Polymorphs of TiP 4 N 8 Synthesized from Binary Nitrides". Angewandte Chemie International Edition. 61 (19): e202202014. doi:10.1002/anie.202202014. ISSN 1433-7851. PMC 9310718. PMID 35179291.
  29. ^ a b Pucher, Florian J.; Karau, Friedrich W.; Schmedt auf der Günne, Jörn; Schnick, Wolfgang (April 2016). "CdP 2 N 4 and MnP 2 N 4 – Ternary Transition-Metal Nitridophosphates". European Journal of Inorganic Chemistry. 2016 (10): 1497–1502. doi:10.1002/ejic.201600042. ISSN 1434-1948.
  30. ^ a b c Kloß, Simon D.; Janka, Oliver; Block, Theresa; Pöttgen, Rainer; Glaum, Robert; Schnick, Wolfgang (2019-03-26). "Open-Shell 3d Transition Metal Nitridophosphates M II P 8 N 14 ( M II =Fe, Co, Ni) by High-Pressure Metathesis". Angewandte Chemie International Edition. 58 (14): 4685–4689. doi:10.1002/anie.201809146. ISSN 1433-7851. PMID 30320436. S2CID 52982994.
  31. ^ Ambach, Sebastian J.; Pritzl, Reinhard M.; Bhat, Shrikant; Farla, Robert; Schnick, Wolfgang (2024-02-07). "Nitride Synthesis under High-Pressure, High-Temperature Conditions: Unprecedented In Situ Insight into the Reaction". Inorganic Chemistry. 63 (7): 3535–3543. doi:10.1021/acs.inorgchem.3c04433. ISSN 0020-1669. PMID 38324917. S2CID 267545137.
  32. ^ Sedlmaier, Stefan J.; Eberspächer, Moritz; Schnick, Wolfgang (March 2011). "High-Pressure Synthesis, Crystal Structure, and Characterization of Zn 2 PN 3 – A New catena -Polynitridophosphate". Zeitschrift für anorganische und allgemeine Chemie. 637 (3–4): 362–367. doi:10.1002/zaac.201000403. ISSN 0044-2313.
  33. ^ a b c d Karau, Friedrich; Oeckler, Oliver; Schäfers, Franz; Niewa, Rainer; Schnick, Wolfgang (August 2007). "Zn 8 [P 12 N 24 ]O 2 – ein Nitridophosphat-oxid mit Sodalith-Struktur". Zeitschrift für anorganische und allgemeine Chemie. 633 (9): 1333–1338. doi:10.1002/zaac.200600322. ISSN 0044-2313.
  34. ^ Ambach, Sebastian J.; Somers, Cody; de Boer, Tristan; Eisenburger, Lucien; Moewes, Alexander; Schnick, Wolfgang (2023-01-16). "Structural Influence of Lone Pairs in GeP 2 N 4 , a Germanium(II) Nitridophosphate". Angewandte Chemie International Edition. 62 (3): e202215393. doi:10.1002/anie.202215393. ISSN 1433-7851. PMC 10107938. PMID 36350660.
  35. ^ a b c d e f g h i Mallmann, Mathias; Wendl, Sebastian; Strobel, Philipp; Schmidt, Peter J.; Schnick, Wolfgang (2020-05-15). "Sr 3 P 3 N 7 : Complementary Approach by Ammonothermal and High-Pressure Syntheses". Chemistry – A European Journal. 26 (28): 6257–6263. doi:10.1002/chem.202000297. ISSN 0947-6539. PMC 7318702. PMID 32030819.
  36. ^ a b Dialer, Marwin; Pointner, Monika M.; Wandelt, Sophia L.; Strobel, Philipp; Schmidt, Peter J.; Bayarjargal, Lkhamsuren; Winkler, Björn; Schnick, Wolfgang (2023-12-03). "Order and Disorder in Mixed (Si, P)–N Networks Sr 2 SiP 2 N 6 :Eu 2+ and Sr 5 Si 2 P 6 N 16 :Eu 2+". Advanced Optical Materials. doi:10.1002/adom.202302668. ISSN 2195-1071.
  37. ^ Pointner, Monika M.; Oeckler, Oliver; Schnick, Wolfgang (2023-09-26). "Tetra-Face-Capped Octahedra in a Tetrahedra Network – Structure Determination and Scanning Transmission Electron Microscopy of SrAl 5 P 4 N 10 O 2 F 3". Chemistry – A European Journal. 29 (54): e202301960. doi:10.1002/chem.202301960. ISSN 0947-6539. PMID 37410334.
  38. ^ a b c d Wendl, Sebastian; Zipkat, Mirjam; Strobel, Philipp; Schmidt, Peter J.; Schnick, Wolfgang (2021-02-23). "Synthesis of Nitride Zeolites in a Hot Isostatic Press". Angewandte Chemie International Edition. 60 (9): 4470–4473. doi:10.1002/anie.202012722. ISSN 1433-7851. PMC 7985876. PMID 33201554.
  39. ^ "Электронное строение, химическая связь и некоторые физико-химические свойства кристаллов A1PN2(A1=H, Li, Na, Ag) - Пермина, Виктория Сергеевна - 02.00.04 - Физическая химия". freereferats.ru. Retrieved 2024-02-22.
  40. ^ a b c d e f g h Kloß, Simon D.; Weidmann, Niels; Niklaus, Robin; Schnick, Wolfgang (2016-09-19). "High-Pressure Synthesis of Melilite-type Rare-Earth Nitridophosphates RE 2 P 3 N 7 and a Ba 2 Cu[Si 2 O 7 ]-type Polymorph". Inorganic Chemistry. 55 (18): 9400–9409. doi:10.1021/acs.inorgchem.6b01611. ISSN 0020-1669. PMID 27579899.
  41. ^ Kloß, Simon D.; Neudert, Lukas; Döblinger, Markus; Nentwig, Markus; Oeckler, Oliver; Schnick, Wolfgang (2017-09-13). "Puzzling Intergrowth in Cerium Nitridophosphate Unraveled by Joint Venture of Aberration-Corrected Scanning Transmission Electron Microscopy and Synchrotron Diffraction". Journal of the American Chemical Society. 139 (36): 12724–12735. doi:10.1021/jacs.7b07075. ISSN 0002-7863. PMID 28823161.
  42. ^ Kloß, Simon David; Schnick, Wolfgang (2015-09-14). "Rare-Earth-Metal Nitridophosphates through High-Pressure Metathesis". Angewandte Chemie International Edition. 54 (38): 11250–11253. doi:10.1002/anie.201504844. ISSN 1433-7851. PMID 26352033.
  43. ^ Kloß, Simon D.; Weidmann, Niels; Schnick, Wolfgang (2017-04-03). "Antiperovskite Nitridophosphate Oxide Ho 3 [PN 4 ]O by High-Pressure Metathesis". European Journal of Inorganic Chemistry. 2017 (13): 1930–1937. doi:10.1002/ejic.201601425. ISSN 1434-1948.
  44. ^ Kloß, Simon D.; Wandelt, Sophia; Weis, Andreas; Schnick, Wolfgang (2018-03-12). "Accessing Tetravalent Transition-Metal Nitridophosphates through High-Pressure Metathesis". Angewandte Chemie International Edition. 57 (12): 3192–3195. doi:10.1002/anie.201712006. ISSN 1433-7851. PMID 29377432.