Mike Towry
|
Read other articles:
Piroforik plutonium (terbakar secara spontan jika terkena udara, menyebabkannya bersinar seperti bara). Piroforik (pyrophoric) atau bahan kimia piroforik adalah suatu zat berbentuk cairan, padatan, ataupun gas yang mudah terbakar secara spontan (dalam waktu lima menit) apabila terpapar atau bereaksi secara langsung dengan uap air,[1] oksigen,[2] atau dalam suatu kondisi di udara terbuka ketika suhu berada di titik kurang dari atau sama dengan 130 °F/ 54,44 °C.[...
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Ștefan Golescu – news · newspapers · books · scholar · JSTOR (August 2020) Ștefan GolescuMinister of Foreign AffairsIn office1 March 1867 – 5 August 1867MonarchCarol I of RomaniaPreceded byGeorge Barbu ȘtirbeiSucceeded byAlexandru Teriac...
Biografi ini memerlukan lebih banyak catatan kaki untuk pemastian. Bantulah untuk menambahkan referensi atau sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus, khususnya jika berpotensi memfitnah.Cari sumber: Pakubuwana XI – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Pakubuwana XIꦥꦏꦸꦧꦸꦮꦤ�...
DC Universe supervillain who is primarily an enemy of Green Lantern Comics character Hector HammondHector HammondInterior artwork from Who's Who: The Definitive Directory of the DC Universe 10 (December 1985 DC Comics) Art by Gil KanePublication informationPublisherDC ComicsFirst appearanceGreen Lantern (vol. 2) #5 (March–April 1961)Created byJohn BroomeGil KaneIn-story informationAlter egoHector HammondSpeciesMetahumanTeam affiliationsThe SocietyRoyal Flush GangOrange Lantern Cor...
American attorney and politician from Vermont George N. DaleU.S. Consul for Coaticook, Quebec, CanadaIn office1901–1902Preceded byJesse H. JohnsonSucceeded byFranklin D. HaleMember of the Vermont Senate from Essex CountyIn office1894–1896Preceded byFrederick A. TurnerSucceeded byJames H. BeattieIn office1866–1870Preceded byLewis H. TaborSucceeded byJohn W. HartshornLieutenant Governor of VermontIn office1870–1872GovernorJohn W. StewartPreceded byGeorge W. HendeeSucceeded byRussell S. ...
Злора́дство — радость, связанная с чужой неудачей, бедой, драмой или трагедией, или чужим невезением, несчастьем или горем. Возвращение в монастырь, Эдуардо Замацоис и Забала (англ.) (рус., 1868 Содержание 1 Причины злорадства 2 Научные исследования 3 См. также 4 При�...
追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍�...
Disambiguazione – Se stai cercando l'omonima competizione di pallacanestro maschile, vedi Coppa delle Coppe 1974-1975 (pallacanestro maschile). Coppa delle Coppe 1974-1975 Competizione Coppa delle Coppe UEFA Sport Calcio Edizione 15ª Organizzatore UEFA Date dal 18 settembre 1974al 14 maggio 1975 Partecipanti 32 Nazioni 32 Risultati Vincitore Dinamo Kiev(1º titolo) Secondo Ferencváros Semi-finalisti PSVStella Rossa Statistiche Miglior marcatore Willy van der Kuijlen (8) Inco...
Voce principale: Associazione Calcio Femminile Alaska Gelati Lecce. A.C.F. Alaska Gelati LecceStagione 1982Sport calcio Squadra Alaska Lecce Allenatore Antonio Curreri Presidente Ernesto Guarini Serie ACampione d'Italia. Coppa ItaliaVincitore.[1] Maggiori presenzeCampionato: Boselli e Mariotti (24) Miglior marcatoreCampionato: Reilly (16) 1981 1983 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Associazione Calcio Femminile Alaska Gela...
Protected area in the Northern Territory, AustraliaCorroboree Rock Conservation ReserveNorthern TerritoryIUCN category V (protected landscape/seascape)[1] Corroboree RockCorroboree Rock Conservation ReserveCoordinates23°40′52″S 134°12′57″E / 23.68111°S 134.21583°E / -23.68111; 134.21583Established1962[1]Area7 hectares (17 acres)[1]Visitation15,000 (in 2011)[2]Managing authoritiesParks and Wildlife Commission of the Nort...
Public university in Malaysia This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Universiti Malaysia Perlis – news · newspapers · books · scholar · JSTOR (November 2015) (Learn how and when to remove this message) University of Malaysia, PerlisUniversiti Malaysia Perlis (Malay)اونيۏرسيتي مليس...
ShūbunLecture dans un bosquet de bambous.1446. Encre et couleurs légères sur papier, L. 33,7 cmBiographieNaissance 1414Décès 1463KyotoNom dans la langue maternelle 周文Activités Peintre, moine bouddhisteAutres informationsA travaillé pour Shōkoku-jiMaître JosetsuŒuvres principales Hue of the Water, Light on the Peaks (d), Reading in a Bamboo Grove (d)modifier - modifier le code - modifier Wikidata Tenshō Shūbun, nom de pinceau : Ekkei, est un moine-peintre japonais du XVe...
Tunisian journalist Naziha Réjiba in 2015 Naziha Réjiba (Tunisian Arabic: نزيهة رجيبة) also known as Om Ziad (أم زياد) is a Tunisian journalist. She edits the online journal Kalima.[1] In 2000, Réjiba co-founded Kalima, along with Sihem Bensedrine. In 2001, Réjiba and Bensedrine founded Observatoire de la Liberté de la Presse, de L'Edition et de la Création (OLPEC), a group that promotes freedom of the press and which is banned in Tunisia.[1] Réjiba has ...
مراهقةمعلومات عامةجانب من جوانب تطور الإنسان طفولةيفاع أشد تعديل - تعديل مصدري - تعديل ويكي بيانات مراهقان يستمعان للموسيقى جزء من سلسلة حولنمو الإنسان وتطوره المراحل مراحل تطور الجنين البشري جنين حي رضيع الطفل المتهادي الطفولة المبكرة طفل يفاع مراهقة بالغ كهل كبر السن م�...
آرون بوبندزا معلومات شخصية الميلاد 7 أغسطس 1996 (العمر 27 سنة)مواندا الطول 1.80 م (5 قدم 11 بوصة) مركز اللعب مهاجم الجنسية الغابون معلومات النادي النادي الحالي نادي الشباب الرقم 9 مسيرة الشباب سنوات فريق –2015 سي إف مونانا المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2015–2...
Russian composer (1840–1893) Tchaikovsky redirects here. For other uses, see Tchaikovsky (disambiguation). Pyotr TchaikovskyПётр ЧайковскийTchaikovsky, c. 1888Born(1840-05-07)7 May 1840Votkinsk, Russian EmpireDied6 November 1893(1893-11-06) (aged 53)Saint Petersburg, Russian EmpireWorksList of compositionsSignature(in Latin script)(in Cyrillic script) Pyotr Ilyich Tchaikovsky[n 1] (/tʃaɪˈkɒfski/ chy-KOF-skee;[2] 7 May 1840 – 6 November 1893) ...
Untuk the former Brooklyn–Manhattan Transit Corporation 1 service, lihat Q (New York City Subway service). Broadway – Seventh Avenue LocalUjung utaraVan Cortlandt Park – 242nd StreetUjung selatanSouth FerryStasiun38 (termasuk Cortlandt Street)GerbongR62 dan R62A 1 Broadway – Seventh Avenue Local adalah jalur angkutan cepat New York City Subway. Jalur ini ditandai dengan warna merah tomat pada markah stasiun, rute, dan peta kereta bawah tanah resmi, karena jalur ini beroperas...
2009 novel by Virginia DeMarce 1635: The Tangled Web AuthorVirginia DeMarceCover artistTom KiddLanguageEnglishSeries1632 seriesGenreAlternate History/Science fictionPublisherBaen BooksPublication dateDecember 1, 2009Publication placeUnited StatesMedia typePrint (hardback & paperback)Pages368 (paperback)ISBN978-1-4391-3308-8 (paperback)OCLC434563397Dewey Decimal813.6Preceded by1635: The Dreeson Incident Followed by1635: The Eastern Front 1635: The Tangled Web...
Kongres Partai Komunis Vietnam Nasional ke-6Bendera Partai Komunis VietnamTanggal15–18 Desember 1986 (4 hari)LokasiPusat Konvensi Nasional VietnamPartisipan1,129 delegasi (yang meliputi anggota Komite Pusat ke-5)HasilPemilihan Komite Pusat ke-6 Kongres Partai Komunis Vietnam Nasional ke-6 (bahasa Vietnam: Đại hội Đảng Cộng sản Việt Nam VI) (PKV) diadakan di Balai Ba Đình, Hanoi, antara 15 dan 18 Desember 1986. 1,129 delegasi mewakili sekitar 1,900,000 anggota partai ters...
Ма́лая теоре́ма Ферма́ — теорема теории чисел, которая утверждает, что[1]: Если p {\displaystyle p} — простое число и a {\displaystyle a} — целое число, не делящееся на p , {\displaystyle p,} то a p − 1 − 1 {\displaystyle a^{p-1}-1} делится на p . {\displaystyle p.} На языке теории сравнений: a p − 1 {\displaystyle a^{p-1}} ...