Mehler kernel

The Mehler kernel is a complex-valued function found to be the propagator of the quantum harmonic oscillator.

Mehler's formula

Mehler (1866) defined a function[1]

and showed, in modernized notation,[2] that it can be expanded in terms of Hermite polynomials H(.) based on weight function exp(−x²) as

This result is useful, in modified form, in quantum physics, probability theory, and harmonic analysis.

Physics version

In physics, the fundamental solution, (Green's function), or propagator of the Hamiltonian for the quantum harmonic oscillator is called the Mehler kernel. It provides the fundamental solution[3] φ(x,t) to

The orthonormal eigenfunctions of the operator D are the Hermite functions,

with corresponding eigenvalues (-2n-1), furnishing particular solutions

The general solution is then a linear combination of these; when fitted to the initial condition φ(x,0), the general solution reduces to

where the kernel K has the separable representation

Utilizing Mehler's formula then yields

On substituting this in the expression for K with the value exp(−2t) for ρ, Mehler's kernel finally reads

When t = 0, variables x and y coincide, resulting in the limiting formula necessary by the initial condition,

As a fundamental solution, the kernel is additive,

This is further related to the symplectic rotation structure of the kernel K.[4]

When using the usual physics conventions of defining the quantum harmonic oscillator instead via

and assuming natural length and energy scales, then the Mehler kernel becomes the Feynman propagator which reads

i.e.

When the in the inverse square-root should be replaced by and should be multiplied by an extra Maslov phase factor [5]


When the general solution is proportional to the Fourier transform of the initial conditions since

and the exact Fourier transform is thus obtained from the quantum harmonic oscillator's number operator written as[6]

since the resulting kernel

also compensates for the phase factor still arising in and , i.e.

which shows that the number operator can be interpreted via the Mehler kernel as the generator of fractional Fourier transforms for arbitrary values of t, and of the conventional Fourier transform for the particular value , with the Mehler kernel providing an active transform, while the corresponding passive transform is already embedded in the basis change from position to momentum space. The eigenfunctions of are the usual Hermite functions which are therefore also Eigenfunctions of .[7]

Probability version

The result of Mehler can also be linked to probability. For this, the variables should be rescaled as xx/2, yy/2, so as to change from the 'physicist's' Hermite polynomials H(.) (with weight function exp(−x2)) to "probabilist's" Hermite polynomials He(.) (with weight function exp(−x2/2)). Then, E becomes

The left-hand side here is p(x,y)/p(x)p(y) where p(x,y) is the bivariate Gaussian probability density function for variables x,y having zero means and unit variances:

and p(x), p(y) are the corresponding probability densities of x and y (both standard normal).

There follows the usually quoted form of the result (Kibble 1945)[8]

This expansion is most easily derived by using the two-dimensional Fourier transform of p(x,y), which is

This may be expanded as

The Inverse Fourier transform then immediately yields the above expansion formula.

This result can be extended to the multidimensional case.[8][9][10]

Fractional Fourier transform

Since Hermite functions ψn are orthonormal eigenfunctions of the Fourier transform,

in harmonic analysis and signal processing, they diagonalize the Fourier operator,

Thus, the continuous generalization for real angle α can be readily defined (Wiener, 1929;[11] Condon, 1937[12]), the fractional Fourier transform (FrFT), with kernel

This is a continuous family of linear transforms generalizing the Fourier transform, such that, for α = π/2, it reduces to the standard Fourier transform, and for α = −π/2 to the inverse Fourier transform.

The Mehler formula, for ρ = exp(−iα), thus directly provides

The square root is defined such that the argument of the result lies in the interval [−π /2, π /2].

If α is an integer multiple of π, then the above cotangent and cosecant functions diverge. In the limit, the kernel goes to a Dirac delta function in the integrand, δ(x−y) or δ(x+y), for α an even or odd multiple of π, respectively. Since [f ] = f(−x), [f ] must be simply f(x) or f(−x) for α an even or odd multiple of π, respectively.

See also

References

  1. ^ Mehler, F. G. (1866), "Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung", Journal für die Reine und Angewandte Mathematik (in German) (66): 161–176, ISSN 0075-4102, ERAM 066.1720cj (cf. p 174, eqn (18) & p 173, eqn (13) )
  2. ^ Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. (1955), Higher transcendental functions. Vol. II, McGraw-Hill (scan:   p.194 10.13 (22))
  3. ^ Pauli, W., Wave Mechanics: Volume 5 of Pauli Lectures on Physics (Dover Books on Physics, 2000) ISBN 0486414620 ; See section 44.
  4. ^ The quadratic form in its exponent, up to a factor of −1/2, involves the simplest (unimodular, symmetric) symplectic matrix in Sp(2,R). That is,
      where
    so it preserves the symplectic metric,
  5. ^ Horvathy, Peter (1979). "Extended Feynman Formula for Harmonic Oscillator". International Journal of Theoretical Physics. 18 (4): 245-250. Bibcode:1979IJTP...18..245H. doi:10.1007/BF00671761. S2CID 117363885.
  6. ^ Wolf, Kurt B. (1979), Integral Transforms in Science and Engineering, Springer ([1] and [2]); see section 7.5.10.
  7. ^ Celeghini, Enrico; Gadella, Manuel; del Olmo, Mariano A. (2021). "Hermite Functions and Fourier Series". Symmetry. 13 (5): 853. arXiv:2007.10406. Bibcode:2021Symm...13..853C. doi:10.3390/sym13050853.
  8. ^ a b Kibble, W. F. (1945). "An extension of a theorem of Mehler's on Hermite polynomials". Mathematical Proceedings of the Cambridge Philosophical Society. 41 (1): 12–15. Bibcode:1945PCPS...41...12K. doi:10.1017/S0305004100022313. MR 0012728. S2CID 121931906.
  9. ^ Slepian, David (1972), "On the symmetrized Kronecker power of a matrix and extensions of Mehler's formula for Hermite polynomials", SIAM Journal on Mathematical Analysis, 3 (4): 606–616, doi:10.1137/0503060, ISSN 0036-1410, MR 0315173
  10. ^ Hörmander, Lars (1995). "Symplectic classification of quadratic forms, and general Mehler formulas". Mathematische Zeitschrift. 219: 413–449. doi:10.1007/BF02572374. S2CID 122233884.
  11. ^ Wiener, N (1929), "Hermitian Polynomials and Fourier Analysis", Journal of Mathematics and Physics 8: 70–73.
  12. ^ Condon, E. U. (1937). "Immersion of the Fourier transform in a continuous group of functional transformations", Proc. Natl. Acad. Sci. USA 23, 158–164. online

Read other articles:

Richard Jaquelin MarshallLahir(1895-06-16)16 Juni 1895Markham, VirginiaMeninggal3 Agustus 1973(1973-08-03) (umur 78)Fort Lauderdale, FloridaDikebumikanArlington National CemeteryPengabdianAmerika SerikatDinas/cabangAngkatan Darat Amerika SerikatLama dinas1915–1946Pangkat Mayor JenderalPerang/pertempuranEkspedisi Pancho VillaPerang Dunia IPerang Dunia IIPenghargaanDistinguished Service CrossDistinguished Service Medal (3)Silver StarLegion of MeritDistinguished Service Star (Filipin...

 

Pintu gerbang (Kori Agung) Puri Agung Jro Kuta Puri Agung Jro Kuta adalah kompleks bangunan bersejarah yang terletak di Jalan Sutomo Nomor 38, Denpasar, Bali, Indonesia.[1] Puri ini merupakan tempat tinggal keluarga kerajaan yang memiliki garis keturunan langsung dengan Kerajaan Klungkung. Puri ini juga merupakan pengempon Pura Luhur Uluwatu, salah satu pura Sad Kahyangan di Bali.[2] Sejarah Puri Agung Jro Kuta didirikan sekitar tahun 1820 Masehi oleh Dewa Gede Jambe Badung at...

 

Catholic society of apostolic life This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Priestly Fraternity of Saint Peter – news · newspapers · books · scholar · JSTOR (September 2023) (Learn how and when to remove this template message) Priestly Fraternity of Saint PeterFraternitas Sacerdotalis Sancti PetriAbbreviationFSSPFormationJuly 18, 1988;&#...

Indian political party Indian political party Tipra Motha Party AbbreviationTIPRA / TMPLeaderPradyot Bikram Manikya Deb BarmaPresidentBijoy Kumar HrangkhawlPresidiumPolitburoFounderPradyot Bikram Manikya Deb Barma[1]Founded2019HeadquartersManikya Dynasty Heritage Residential House,Ujjayanta Palace,Palace Compound,Agartala, Tripura799001Student wingTipra Indigenous Students FederationYouth wingYouth Tipra FederationWomen's wingTipra Women FederationIdeologyTripuri nationalism[2]...

 

Pour les articles homonymes, voir Thijssen. Gerben ThijssenGerben Thijssen en 2019InformationsNaissance 21 juin 1998 (25 ans)GenkNationalité belgeÉquipe actuelle Intermarché-WantyÉquipes non-UCI 2015-2016Acrog-Balen BC2017-7.2018Lotto-Soudal U23Équipes UCI 8.2018-2018Lotto-Soudal (stagiaire)7.2019-2021Lotto-Soudal2022Intermarché-Wanty-Gobert Matériaux2023Intermarché-Circus-Wanty2024-Intermarché-WantyPrincipales victoires Championnat Champion d'Europe de course à l'élimination...

 

Bandar Udara Internasional Sultan Syarif Kasim IISultan Syarif Kasim II International Airportبندر اودارا اينترنسيونل سلطان شريف قاسم ٢Lapangan Terbang Antarabangsa Sultan Syarif Kasim IIIATA: PKUICAO: WIBBWMO: 96109InformasiJenisPublik / MiliterPemilikPT Aviasi Pariwisata Indonesia (Persero)PengelolaPT Angkasa Pura IIMelayaniPekansikawanLokasiPekanbaru, Riau, IndonesiaDibuka1940Maskapai penghubung Susi Air Maskapai utama Citilink Lion Air Susi Air Wings Air ...

U.S. government agency created to intern Japanese Americans during WWII The War Relocation Authority operated ten Japanese-American internment camps in remote areas of the United States during World War II. The War Relocation Authority (WRA) was a United States government agency established to handle the internment of Japanese Americans during World War II. It also operated the Fort Ontario Emergency Refugee Shelter in Oswego, New York, which was the only refugee camp set up in the United Sta...

 

DigimonLogoDigimon versi Bahasa InggrisDiciptakan olehBandai, WiZKarya asliDigital Monster (1997)PemilikAkiyoshi HongoBandaiToei AnimationPublikasi tercetakKomikLihat dibawahFilm dan televisiFilmLihat dibawahSeri televisiLihat dibawahPermainanTradisionalLihat dibawahPermainan videoLihat dibawahLainnyaMainanD-ArtsS.H. FiguartsBandaiLogo Digimon Digimon (デジモンcode: ja is deprecated , Dejimon) yang merupakan singkatan dari Digital Monster (デジタルモンスター Dejitaru Monsutā) ad...

 

Questa voce o sezione sull'argomento registi è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti del progetto di riferimento. Questa voce sugli argomenti registi tedes...

Species of marine plant Neptune grass redirects here. Not to be confused with Neptune plant. Posidonia oceanica Conservation status Least Concern  (IUCN 3.1)[1] Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Monocots Order: Alismatales Family: Posidoniaceae Genus: Posidonia Species: P. oceanica Binomial name Posidonia oceanica(L.) Delile Posidonia oceanica range Posidonia oceanica, commonly known as Neptune grass or Mediterranean ta...

 

American Indian tribe Ethnic group Delaware NationÈhëliwsikakw LënapeyokTotal population2,081 (2021)Regions with significant populations United States ( Oklahoma)LanguagesEnglish, Delaware (Unami, Munsee)ReligionChristianity, Native American Church, traditional tribal religionRelated ethnic groupsother Lenape and Algonquian peoples The Delaware Nation (Delaware: Èhëliwsikakw Lënapeyok),[1] based in Anadarko, Oklahoma[2] is one of three federally recognized trib...

 

National sports team KoreaCaptainHeesung ChungITF ranking27 (20 September 2021)Colorsred & whiteFirst year1960Years played59Ties played (W–L)114 (51-63)Years inWorld Group3 (0-3)Best finishWG 1r (1981, 1987 & 2008)Most total winsHyung-Taik Lee (51-24)Most singles winsHyung-Taik Lee (41-9)Most doubles winsJin-Sun Yoo (10-6)Hyung-Taik Lee (10-15)Best doubles teamJin-Sun Yoo and Bong-Soo Kim (5-1)Most ties playedHyung-Taik Lee (31)Most years playedHyung-Taik Lee (15) The South Korea me...

Kanako MomotaInformasi latar belakangNama lainKanako, Deko-chan[1]Lahir12 Juli 1994 (umur 29)AsalHamamatsu, Prefektur Shizuoka, JepangGenrePopPekerjaanPenyanyiTahun aktif2005–sekarangLabelKing RecordsArtis terkaitMomoiro Clover ZSitus webhttp://www.momoclo.net/ Kanako Momota (百田 夏菜子code: ja is deprecated , Momota Kanako, kelahiran 12 Juli 1994) adalah seorang penyanyi idola Jepang. Ia paling dikenal sebagai pemimpin grup idola perempuan Momoiro Clover Z. Momota menjad...

 

東求女塚古墳 残存墳丘所在地 兵庫県神戸市東灘区住吉宮町1丁目(求女塚東公園内)位置 北緯34度42分46.54秒 東経135度15分50.74秒 / 北緯34.7129278度 東経135.2640944度 / 34.7129278; 135.2640944形状 前方後円墳規模 墳丘長80メートル(推定)出土品 銅鏡6面(三角縁神獣鏡4面)・車輪石・須恵器・土師器等築造時期 4世紀後半史跡 指定なし地図 東求女塚古墳 兵庫県�...

 

1991 soundtrack album by Stevie WonderJungle FeverSoundtrack album by Stevie WonderReleasedMay 28, 1991Genre R&B Length51:06LabelMotownProducerStevie Wonder, Nathan WattsStevie Wonder chronology Characters(1987) Jungle Fever(1991) Conversation Peace(1995) Singles from Jungle Fever Gotta Have YouReleased: May 1991 Fun DayReleased: June 1991 These Three WordsReleased: September 1991 Jungle Fever is a soundtrack album by American R&B singer-songwriter, producer, and multi-instrum...

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Walter H. SchottkyWalter Hermann Schottky (1886-1976)Lahir23 Juli, 1886Zürich, SwitzerlandMeninggal4 Maret 1976Pretzfeld, Jerman BaratTempat ting...

 

Fourmi noire des jardins «  Fourmi noire des jardins » redirige ici. Pour la Fourmi noire des bois, voir Lasius fuliginosus. Lasius niger Fourmi noire des jardins sur des cochenilles.Classification Règne Animalia Embranchement Arthropoda Classe Insecta Super-ordre Endopterygota Ordre Hymenoptera Sous-ordre Apocrita Super-famille Vespoidea Famille Formicidae Sous-famille Formicinae Genre Lasius EspèceLasius niger(Linnaeus, 1758) Lasius niger, la Fourmi noire des jardins, est une ...

 

Booitshoeke Deelgemeente in België Situering Gewest Vlaanderen Provincie West-Vlaanderen Gemeente Veurne Fusie 1971 Coördinaten 51° 5′ NB, 02° 45′ OL Algemeen Oppervlakte 3,35 km² Inwoners (14/06/2011) 102 (30,45 inw./km²) Mannen 50,98% Vrouwen 49,02% Overig Postcode 8630 NIS-code 38025(B) Oude NIS-code 38005 Detailkaart Locatie in de gemeente Portaal    België Booitshoeke is een polderdorpje in de Belgische provincie West-Vlaanderen. Het is sinds 1971 een deelge...

Anne Ramsey ai Premi Oscar 1988 Anne Ramsey, nata Anne Mobley (Omaha, 27 marzo 1929 – Los Angeles, 11 agosto 1988), è stata un'attrice statunitense. Indice 1 Biografia 2 Filmografia parziale 2.1 Cinema 2.2 Televisione 3 Doppiatori italiani 4 Riconoscimenti 5 Altri progetti 6 Collegamenti esterni Biografia Figlia di Nathan Mobley e di Eleanor Smith (morta nel 1964), la Ramsey iniziò la propria carriera a Hollywood negli anni settanta. Comparve insieme al marito, l'attore Logan Ramsey (da c...

 

Currency used from 1967 until 1997 zaire, new zairezaïre (French) nouveau zaïre (French)1 zaire banknoteISO 4217CodeZRN before 1994: ZRZUnitUnitnouveau zaïrePluralnouveaux zairesDenominationsSubunit 1⁄100nouveau likuta 1⁄10,000sengiPlural nouveau likutanouveaux makutaBanknotes New makuta: 1, 5, 10, 50 New zaire: 1, 5, 10, 20, 50, 100, 200, 500, 1000, 5000, 10,000, 20,000, 50,000, 100,000, 500,000, 1,000,000 CoinsNone for new zaireDemographicsUse...