M-type asteroid

Image of the M-type asteroid 21 Lutetia taken by the ESA Rosetta Spacecraft during a flyby in 2010

M-type (metallic-type, aka M-class) asteroids are a spectral class of asteroids which appear to contain higher concentrations of metal phases (e.g. iron-nickel) than other asteroid classes,[1] and are widely thought to be the source of iron meteorites.[2]

Definition

Asteroids are classified as M-type based upon their generally featureless and flat to red-sloped absorption spectra in the visible to near-infrared and their moderate optical albedo. Along with the spectrally similar E-type and P-type asteroids (both categories E and P were formerly type-M in older systems), they are included in the larger X-type asteroid group and are distinguishable only by optical albedo:[3]

P-type albedo < 0.1
M-type albedo in 0.1 ... 0.3
E-type albedo > 0.3

Characteristics

Composition

Although widely assumed to be metal-rich (the reason for use of "M" in the classification), the evidence for a high metal content in the M-type asteroids is only indirect, though highly plausible. Their spectra are similar to those of iron meteorites and enstatite chondrites,[4] and radar observations have shown that their radar albedos are much higher than other asteroid classes,[5] consistent with the presence of higher density compositions like iron-nickel.[1] Nearly all of the M-types have radar albedos at least twice as high as the more common S- and C-type, and roughly one-third have radar albedos ~3× higher.[1]

High resolution spectra of the M-type have sometimes shown subtle features longward of 0.75 μm and shortward of 0.55 μm.[6] The presence of silicates is evident in many,[7][8] and a significant fraction show evidence of absorption features at 3 μm, attributed to hydrated silicates.[9] The presence of silicates, and especially hydrated silicates, is at odds with the traditional interpretation of M-types as remnant iron cores.

Possible meteorite analogs for M-type asteroids.
A mesosiderite showing a mixture of metals and silicates.
An enstatite chondrite displaying a mix of metals and silicates (enstatite).
A metal-rich carbonaceous chondrite, or bencubbinite.
A stony-iron pallasite, composited of iron-nickel and olivine.

Bulk density and porosity

The bulk density of an asteroid provides clues about its composition and meteoritic analogs.[10] For the M-types, the proposed analogs have bulk densities that range from ~3 g/cm3 for some types of carbonaceous chondrites up to nearly 8 g/cm3 for the iron-nickel present in iron-meteorites.[2][4][9] Given the bulk density of an asteroid and the density of the materials that make it up (aka particle or grain density), one can calculate its porosity and infer something of its internal structure; for example, whether an object is coherent, a rubble pile, or something in-between.[10]

To calculate the bulk density of an asteroid requires an accurate estimate of its mass and volume; both of these are difficult to obtain given their small size relative to other solar system objects. In the case of the larger asteroids, one can estimate mass by observing how their gravitational field affects other objects, including other asteroids and orbiting or flyby spacecraft.[11] If an asteroid possesses one or more moons, one can use their collective orbital parameters (e.g. orbital period, semimajor axis) to estimate the masses of the ensemble, for example in the two-body problem.

To estimate an asteroid's volume requires, at a minimum, an estimate of an asteroid's diameter. In most cases, these are estimated from the visual albedo (brightness) of the asteroid, chord-lengths during occultations, or their thermal emissions (e.g. IRAS mission). In a few cases, astronomers have managed to develop three-dimensional shape models using a variety of techniques (c.f. 16 Psyche or 216 Kleopatra for examples) or, in a few lucky instances, from spacecraft imaging (c.f 162173 Ryugu).

Asteroid Density Radar Albedo Method (mass, size)
16 Psyche 3.8 ± 0.3[12] 0.34 ± 0.08[13] Ephemeris, shape model
21 Lutetia 3.4 ± 0.3[14] 0.24 ± 0.07[1] Rosetta spacecraft flyby, direct imaging
22 Kalliope 4.1 ± 0.5[15][16] 0.15 ± 0.05[5] Orbit of its moon Linus, shape model
69 Hesperia 4.4 ± 1.0[17] 0.45 ± 0.12[1] Ephemeris, thermal IR/radar size estimate
92 Undina 4.4 ± 0.4[17] 0.38 ± 0.09[1] Ephemeris, thermal IR/radar size estimate
129 Antigone 3.0 ± 1.0[17] 0.36 ± 0.09[1] Ephemeris, thermal IR/radar size estimate
216 Kleopatra 3.4 ± 0.5[18] 0.43 ± 0.10[19] Orbits of its two moons, shape model

Of these, mass measurements made via spacecraft deflection or the orbits of moons are considered the most reliable. Ephemeris estimates are based on the subtle gravitational pull of other objects on that asteroid, or vice versa, and are considered less reliable. The exception to this caveat may be Psyche, as it is the most massive M-type asteroid and has numerous mass estimates.[12] Size estimates based on shape models (usually derived from adaptive optics, occultations, and radar imaging) are the most reliable. Direct spacecraft imaging (Lutetia) is also quite reliable. Sizes based on indirect methods like thermal IR (e.g. IRAS) and radar echoes are less reliable.

None of the M-type asteroids have bulk densities consistent with a pure iron-nickel core. If these objects are porous (aka rubble-piles), then that interpretation may still hold; this is unlikely for Psyche,[12] because of its large size. Given the spectral evidence of silicates on most M-type asteroids, the consensus interpretation for most of these larger asteroids is that they are composed of lower density meteorite analogs (e.g. enstatite chondrites, metal-rich carbonaceous chondrites, mesosiderites), and in some cases may also be rubble piles.[20][18][12]

Formation

The earliest interpretation of the M-type asteroids was that they were the remnant cores of early protoplanets, stripped of their overlying crust and mantles by massive collisions that are thought to have been frequent in the early history of the solar system.[2]

It is acknowledged that some of the smaller M-type asteroids (<100 km) may have formed in this way, but that interpretation was challenged for 16 Psyche, the largest of the M-type asteroids.[21] There are three arguments against Psyche forming in this way.[21] First, it must have started as a Vesta-sized (~500 km) protoplanet; statistically, it is unlikely that Psyche was completely disrupted while Vesta remained intact. Second, there is little or no observational evidence for an asteroid family associated with Psyche, and third, there is no spectroscopic evidence for the expected mantle fragments (i.e. olivine) that would have resulted from this event. Instead, it has been argued that Psyche is the remnant of a protoplanet that was shattered and gravitationally re-accumulated into a well-mixed iron-silicate object.[21] There are numerous examples of metal-silicate meteorites, aka mesosiderites, that might be objects from such a parent body.

One possible response to this second interpretation is that the M-type asteroids (including 16 Psyche) accumulated much closer to the Sun (1–2 au), were stripped of their thin crust/mantles while still molten (or partially so), and later dynamically moved into the current asteroid belt.[22]

A third view is that the largest M-types, including 16 Psyche, may be differentiated bodies (like 1 Ceres and 4 Vesta) but, given the right mix of iron and volatiles (e.g. sulfur), these bodies may have experienced a type of iron volcanism, a.k.a. ferrovolcanism, while still cooling.[23]

Notable examples

In the JPL Small Body Database, there are 980 asteroids classified under the Tholen asteroid spectral classification system.[24] Of those, 38 are classified as M-type.[25] Another 10 were originally classified as X-type, but are now counted among the M-types because their optical albedos fall between 0.1 and 0.3.[26] Overall, the M-types make up approximately 5% of the asteroids classified under the Tholen taxonomy.

(16) Psyche

16 Psyche is the largest M-type asteroid with a mean diameter of 222 km, and has a relatively high mean radar albedo of suggesting it has a high metal content in the upper few meters of its surface.[13] The Psyche spacecraft was launched on october 13th, 2023 is en route to visit 16 Psyche, arriving in 2029.

(21) Lutetia

21 Lutetia has a mean diameter of 100 km,[1] and was the first M-type asteroid to have been imaged by a spacecraft when the Rosetta space probe visited it on 10 July 2010.[27] Its mean radar albedo of is roughly twice that of the average S-type or C-type asteroid, and suggests its regolith contains an elevated amount of metal phases relative to other asteroid classes.[1] Analysis using data from the Rosetta spectrometer (VIRTIS) was consistent with estatitic or iron-rich carbonaceous chondritic materials.[28]

(22) Kalliope

22 Kalliope is the second largest M-type asteroid with a mean diameter of 150 km.[15] A single moon, named Linus, was discovered in 2001[29] and allows for an accurate mass estimate. Unlike most of the M-type asteroids, Kalliope's radar albedo is 0.15, similar to the S- and C-type asteroids,[5] and does not suggest an enrichment of metal in its regolith. It has been the target of high resolution adaptive optics imaging which has been used to provide a reliable size and shape, and a relatively high bulk density of 4.1 g/cm3.[15][16]

(216) Kleopatra

216 Kleopatra, with a mean diameter of 122 km, is the third largest M-type asteroid known after 16 Psyche and 22 Kalliope.[19] Radar delay-Doppler imaging, high-resolution telescopic images, and several stellar occultations show it to be a contact binary asteroid with a shape commonly referred to as a "dog-bone" or "dumbbell."[19] Radar observations from the Arecibo radar telescope indicate a very high radar albedo of in the southern hemisphere, consistent with a metal-rich composition.[19] Kleopatra is also notable for the presence of two small moons, named Alexhelios and Cleoselena, which have allowed its mass and bulk density to be accurately computed.[30]

See also

References

  1. ^ a b c d e f g h i Shepard, M.K.; et al. (2015). "A radar survey of M- and X-class asteroids: III. Insights into their composition, hydration state, and structure". Icarus. 245: 38–55. Bibcode:2015Icar..245...38S. doi:10.1016/j.icarus.2014.09.016.
  2. ^ a b c Bell, J.F.; et al. (2015). "Asteroids: The big picture". In Binzel, Richard P.; Gehrels, Tom; Matthews, Mildred Shapley (eds.). Asteroids II. University of Arizona Press. pp. 921–948. ISBN 978-0-8165-2281-1.
  3. ^ Tholen, D.J.; Barucci, M.A. (1989). "Asteroid taxonomy". In Binzel, Richard P.; Gehrels, Tom; Matthews, Mildred Shapley (eds.). Asteroids II. University of Arizona Press. pp. 298–315. ISBN 0-8165-1123-3.
  4. ^ a b Gaffey; Bell, J.F.; Cruikshank, D. (1989). "Asteroid surface mineralogy". In Binzel, Richard P.; Gehrels, Tom; Matthews, Mildred Shapley (eds.). Asteroids II. University of Arizona Press. pp. 98–127. ISBN 0-8165-1123-3.
  5. ^ a b c Magri, C.; et al. (2007). "A radar survey of main-belt asteroids: Arecibo observations of 55 objects during 1999–2004". Icarus. 186 (1): 126–151. Bibcode:2007Icar..186..126M. doi:10.1016/j.icarus.2006.08.018.
  6. ^ Bus, S.J.; Binzel, R.P. (2002). "Phase II of the Small Main-belt Asteroid Spectroscopy Survey: A feature-based taxonomy". Icarus. 158 (1): 146–177. Bibcode:2002Icar..158..146B. doi:10.1006/icar.2002.6856. S2CID 4880578.
  7. ^ Ockert-Bell, M.; et al. (2010). "The composition of M-type asteroids: Synthesis of spectroscopic and radar observations". Icarus. 210 (2): 674–692. Bibcode:2010Icar..210..674O. doi:10.1016/j.icarus.2010.08.002.
  8. ^ Lupishko, D.F.; et al. (1982). "UBV photometry of the M-type asteroids 16 Psyche and 22 Kalliope". Solar System Research. 16: 75. Bibcode:1982AVest..16..101L.
  9. ^ a b Rivkin, A.S.; et al. (2000). "The nature of M-class asteroids from 3-micron observations". Icarus. 145 (2): 351. Bibcode:2000Icar..145..351R. doi:10.1006/icar.2000.6354.
  10. ^ a b Britt, D.T.; et al. (2015). "Asteroids' density, porosity, and structure". In Bottke, W.F.; Cellino, A.; Paolicchi, P.; Binzel, R.P. (eds.). Asteroids III. University of Arizona Press. pp. 485–500. ISBN 978-0-8165-1123-5.
  11. ^ Pitjeva, E.V.; Pitjev, N.P. (2018). "Masses of the main asteroid belt and the Kuiper belt from the motions of planets and spacecraft". Earth and Planetary Astrophysics. 44 (8–9): 554–566. arXiv:1811.05191v1. Bibcode:2018AstL...44..554P. doi:10.1134/S1063773718090050. S2CID 255197841.
  12. ^ a b c d Elkins-Tanton, L. T.; et al. (2020). "Observations, meteorites, and models: A preflight assessment of the composition and formation of (16) Psyche". Journal of Geophysical Research: Planets. 125 (3): 23. Bibcode:2020JGRE..12506296E. doi:10.1029/2019JE006296. PMC 7375145. PMID 32714727. S2CID 214018872.
  13. ^ a b Shepard, M.K.; et al. (2021). "Asteroid 16 Psyche: Shape, features, and global map". The Planetary Science Journal. 2 (4): 16. arXiv:2110.03635. Bibcode:2021PSJ.....2..125S. doi:10.3847/PSJ/abfdba. S2CID 235918955.
  14. ^ Sierks, H.; et al. (2011). "Images of asteroid 21 Lutetia: A remnant planetesimal from the early Solar system" (PDF). Science. 334 (6055): 487–490. Bibcode:2011Sci...334..487S. doi:10.1126/science.1207325. hdl:1721.1/110553. PMID 22034428. S2CID 17580478.
  15. ^ a b c Vernazza, P.; et al. (2021). "VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis". Astronomy and Astrophysics. 654 (A56): 48. Bibcode:2021A&A...654A..56V. doi:10.1051/0004-6361/202141781. hdl:10261/263281. S2CID 239104699.
  16. ^ a b Ferrais, M. (2021). M-type (22) Kalliope: High density and differentiated interior. 15th Europlanet Science Congress. Bibcode:2021EPSC...15..696F. Retrieved 30 December 2021 – via NASA ADS.
  17. ^ a b c Carry, B. (2012). "Density of asteroids". Planetary and Space Science. 73 (1): 98–118. arXiv:1203.4336. Bibcode:2012P&SS...73...98C. doi:10.1016/j.pss.2012.03.009. S2CID 119226456.
  18. ^ a b Marchis, F.; Jorda, L.; Vernazza, P.; Brož, M.; Hanuš, J.; Ferrais, M.; et al. (September 2021). "(216) Kleopatra, a low density, critically rotating, M-type asteroid". Astronomy & Astrophysics. 653: A57. arXiv:2108.07207. Bibcode:2021A&A...653A..57M. doi:10.1051/0004-6361/202140874. S2CID 237091036. A57. Retrieved 13 October 2021.
  19. ^ a b c d Shepard, Michael K.; Timerson, Bradley; Scheeres, Daniel J.; Benner, Lance A.M.; Giorgini, Jon D.; Howell, Ellen S.; et al. (2018). "A revised shape model of asteroid (216) Kleopatra". Icarus. 311: 197–209. Bibcode:2018Icar..311..197S. doi:10.1016/j.icarus.2018.04.002.
  20. ^ Descamps, P.; Marchis, F.; Pollock, J.; Berthier, J.; Vachier, F.; Birlan, M.; et al. (2008). "New determination of the size and bulk density of the binary asteroid 22 Kalliope from observations of mutual eclipses". Icarus. 196 (2): 578–600. arXiv:0710.1471. Bibcode:2008Icar..196..578D. doi:10.1016/j.icarus.2008.03.014. S2CID 118437111.
  21. ^ a b c Davis, D.R.; Farinella, P.; Marzari, F. (1999). "The missing Psyche family: Collisionally eroded or never formed?". Icarus. 137 (1): 140–151. Bibcode:1999Icar..137..140D. doi:10.1006/icar.1998.6037.
  22. ^ Scott, E.; et al. (2014). "Origin of igneous meteorites and differentiated asteroids". Asteroids. ACM: 483. Bibcode:2014acm..conf..483S.
  23. ^ Johnson, B.C.; Sori, M.M.; Evans, A.J. (2020). "Ferrovolcanism of metal worlds and the origin of pallasites". Nature Astronomy. 4: 41–44. arXiv:1909.07451. Bibcode:2020NatAs...4...41J. doi:10.1038/s41550-019-0885-x. S2CID 202583406.
  24. ^ "spec. type (Tholen) is defined". JPL Solar System Dynamics. JPL Small-Body Database Search Engine. JPL. Retrieved 26 Dec 2021.
  25. ^ "spec. type (Tholen) = M". JPL Solar System Dynamics. JPL Small-Body Database Search Engine. JPL. Retrieved 26 Dec 2021.
  26. ^ "spec. type (Tholen) = X AND albedo >= 0.1 AND albedo <= 0.3". JPL Solar System Dynamics. JPL Small-Body Database Search Engine. JPL. Retrieved 26 Dec 2021.
  27. ^ Schulz, R.; et al. (2012). "Rosetta fly-by at asteroid (21) Lutetia: An overview". Planetary and Space Science. 66 (1): 2–8. Bibcode:2012P&SS...66....2S. doi:10.1016/j.pss.2011.11.013.
  28. ^ Coradini, A.; et al. (2011). "The surface composition and temperature of asteroid 21 Lutetia as observed by Rosetta/VIRTIS". Science. 334 (492): 492–494. Bibcode:2011Sci...334..492C. doi:10.1126/science.1204062. PMID 22034430. S2CID 19439721.
  29. ^ Margot, J.L.; Brown, M.E. (2003). "A low-density M-type asteroid in the main belt". Science. 300 (5627): 1939–1942. Bibcode:2003Sci...300.1939M. doi:10.1126/science.1085844. PMID 12817147. S2CID 5479442.
  30. ^ Descamps, P.; et al. (2011). "Triplicity and physical characteristics of asteroid (216) Kleopatra". Icarus. 245 (2): 64–69. arXiv:1011.5263. Bibcode:2011Icar..211.1022D. doi:10.1016/j.icarus.2010.11.016. S2CID 119286272.

Read other articles:

Peta menunjukkan lokasi Balungao Data sensus penduduk di Balungao[1] Tahun Populasi Persentase 199521.274—200023.8132.45%200725.2140.79% Balungao adalah munisipalitas yang terletak di provinsi Pangasinan, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 25.840 jiwa dan 6.057 rumah tangga. Pembagian wilayah Secara administratif Balungao terbagi menjadi 20 barangay, yaitu: Angayan Norte Angayan Sur Capulaan Esmeralda Kita-kita Mabini Mauban Poblacion Pugaro Rajal...

 

Genting Hong KongJenisPublikKode emitenSEHK: 678IndustriPariwisataDidirikan1993 (1993)KantorpusatHong KongMerek Star Cruises Crystal Cruises Dream Cruises Resorts World Manila MV Werften JasaResortKapal pesiarIndukGenting Group Genting Hong Kong Hanzi tradisional: 雲頂香港有限公司 Hanzi sederhana: 云顶香港有限公司 Alih aksara Mandarin - Hanyu Pinyin: Yúndǐng Xiānggǎng Yǒuxiàngōngsī Yue (Kantonis) - Jyutping: wan4 deng2 hoeng1 gong2 jau5 haan6 gung1 si1 Situs webww...

 

Marathi cinema All-time 1910s 1910-1919 1920s 1920 1921 1922 1923 19241925 1926 1927 1928 1929 1930s 1930 1931 1932 1933 19341935 1936 1937 1938 1939 1940s 1940 1941 1942 1943 19441945 1946 1947 1948 1949 1950s 1950 1951 1952 1953 19541955 1956 1957 1958 1959 1960s 1960 1961 1962 1963 19641965 1966 1967 1968 1969 1970s 1970 1971 1972 1973 19741975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 19841985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 19941995 1996 1997 1998 1999 2000s 2000 2001 ...

Amerika Serikat padaOlimpiadeBendera Amerika SerikatKode IOCUSAKONKomite Olimpiade & Paralimpiade Amerika SerikatMedali 1.127 907 793 Total 2,827 Penampilan Musim Panas18961900190419081912192019241928193219361948195219561960196419681972197619801984198819921996200020042008201220162020Penampilan Musim Dingin192419281932193619481952195619601964196819721976198019841988199219941998200220062010201420182022Penampilan terkait lainnyaOlimpiade Interkala 1906 Berikut ini adalah daftar pembawa bende...

 

Forested headland nature reserve Balls Head ReserveSydney red gum at Balls Head ReserveLocation in Greater metropolitan SydneyTypeNature reserveLocationBalls Head Drive, Waverton, North Sydney Council, New South Wales, AustraliaNearest citySydneyCoordinates33°50.8′S 151°11.7′E / 33.8467°S 151.1950°E / -33.8467; 151.1950Designated1926 by Premier Jack LangEtymologyHenry Lidgbird BallManaged byNorth Sydney Council Waterhole at Balls Head, probably create...

 

Синелобый амазон Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:ЗавропсидыКласс:Пт�...

Public park in Portland, Oregon, U.S. Parklane ParkPark sign, 2022LocationSE 155th Ave. and Main St.Portland, OregonCoordinates45°30′48″N 122°30′16″W / 45.51333°N 122.50444°W / 45.51333; -122.50444Area25.6 acres (10.4 ha)Operated byPortland Parks & Recreation Parklane Park is a 25.6-acre (10.4 ha) public park in southeast Portland, Oregon.[1] The park was acquired in 1993.[2] References ^ Carson, Teresa (July 10, 2020). Pa...

 

Islamic ritual purification Wudu and ghusl facilities (in background) at Jamek Mosque in Kuala Lumpur, Malaysia Part of a series onIslamic jurisprudence(fiqh) Ritual Shahada Salah Raka'ah Qibla Turbah Sunnah prayer (TahajjudTarawih) Witr Nafl prayer Sawm Zakat Hajj Ihram (clothing Mut'ah) Tawaf Umrah (and Hajj) Political Islamic leadership Caliphate Majlis-ash-Shura Imamate Wilayat al-faqih Bay'ah Dhimmi Aman Family Marriage Contract Mahr Misyar Halala Urfi Mut‘ah Polygyny Divorce...

 

Cet article est une ébauche concernant une localité malawite. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Maisons traditionnelles sur la plage du lac Malawi Cimetière chrétien à Nkhotakota Nkhotakota (parfois appelée Kota Kota) est une ville du Malawi, de la Région centrale du pays et plus précisément la plus grande ville et capitale administrative du District de Nkhotakota. La ville est située sur...

Third film trilogy in the Star Wars franchise This article is about Star Wars Episodes VII, VIII, and IX. For the first trilogy of films that were produced after the original trilogy, see Star Wars prequel trilogy. Star Wars sequel trilogyThe Star Wars sequel trilogy logosDirected by J. J. Abrams (VII, IX) Rian Johnson (VIII) Screenplay by Lawrence Kasdan (VII) J. J. Abrams (VII, IX) Michael Arndt (VII) Rian Johnson (VIII) Chris Terrio (IX) Story by Lawrence Kasdan (VII) J. J. Abrams (VII, IX...

 

22nd season of the Super League Super League XXIILeagueSuper LeagueDuration30 RoundsTeams12Highest attendance23,390 Wigan Warriors vs St Helens (14 April)Lowest attendance2,678 Salford Red Devils Vs Hull F.C. (9 June)Average attendance8,568Attendance1,182,437Broadcast partnersSky SportsBBC Sport Fox LeaguebeIN Sports Fox Soccer PlusSport Klub2017 seasonChampionsLeeds Rhinos 8th Super League11th British titleLeague LeadersCastleford TigersRunners-upCastleford TigersBiggest home winCastleford T...

 

Pour les articles homonymes, voir Britannique. Le droit de la nationalité et de la citoyenneté britannique est complexe en raison des différents statuts accordés du fait de l'histoire coloniale du pays. Ses fondements actuels et généraux ont été posés par le British Nationality Act de 1981. Les différents statuts font la distinction principalement entre les citoyens britanniques et les citoyens provenant des territoires britanniques d'outre-mer. Ils sont tous rassemblés sous la no...

American construction and civil engineering company For the German company, see Bechtle. For people named Bechtel, see Bechtel (surname). Bechtel CorporationCompany typePrivateIndustryEngineering and constructionFounded1898; 126 years ago (1898)[1]FounderWarren A. BechtelHeadquartersReston, Virginia, United StatesArea servedWorldwideKey peopleBrendan Bechtel (Chair & CEO)Craig Albert (President & COO)Revenue $17.6 billion (2020)[2]OwnerBechtel familyD...

 

Docking facility for a ferry Tug-propelled Dartmouth ferry barge with integral ramp at each end BC Ferries Dock seen from the ship about to dock A ferry slip is a specialized docking facility that receives a ferryboat or train ferry. A similar structure called a barge slip receives a barge or car float that is used to carry wheeled vehicles across a body of water. Often a ferry intended for motor vehicle transport will carry its own adjustable ramp - when elevated it acts as a wave guard and ...

 

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

Ca.132 Role Bomber/airlinerType of aircraft Manufacturer Caproni First flight 1934 Status Prototype only The Caproni Ca.132 was a prototype for a large aircraft built in Italy in 1934, intended for use as either a bomber or airliner. It was a conventional low-wing cantilever monoplane, powered by a radial engine on each wing and in the nose. The main undercarriage was housed within large streamlined spats. Configured as an airliner, it would have seated 20 passengers. Operators  Kingdom...

 

جيرالدين     الإحداثيات 47°36′09″N 110°16′04″W / 47.6025°N 110.26777777778°W / 47.6025; -110.26777777778   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة تشوتيو  خصائص جغرافية  المساحة 1.495055 كيلومتر مربع1.343044 كيلومتر مربع (1 أبريل 2010)  ارتفاع 956 مت�...

 

Island in Antarctica PlacePeter I IslandDecember 2022 satellite image of Peter I IslandLocation of Peter I Island (circled in red, relative to Antarctica)claimed by Norway6 March 1931Antarctic Treaty23 June 1961Area• Total154 km2 (59 sq mi)• Glaciated95%Highest elevation1,640 m (5,380 ft)ISO 3166 codeAQInternet TLD.aq.no Peter I Island (Norwegian: Peter I Øy)[1] is an uninhabited volcanic island in the Bellingshausen Sea, 450 kilo...

  لمعانٍ أخرى، طالع ناثان (توضيح). ناثان (بالعبرية: נָתָן)‏  معلومات شخصية تاريخ الميلاد القرن 10 ق.م  تاريخ الوفاة القرن 10 ق.م  تعديل مصدري - تعديل   لوحة لماتياس شيتيس تمثل كل من داود و ناثان ناثان (بالعبرية: נָתַן) هو أحد الأنبياء المذكورين في الكتاب المقدس في ا�...

 

一般国道 国道283号 地図 総延長 123.7 km 実延長 119.8 km 現道 116.4 km 制定年 1970年(昭和45年) 起点 岩手県釜石市(北緯39度15分57.17秒 東経141度53分4.73秒 / 北緯39.2658806度 東経141.8846472度 / 39.2658806; 141.8846472) 主な経由都市 岩手県遠野市 終点 岩手県花巻市花巻東BP矢沢交差点(北緯39度23分16.32秒 東経141度8分39.31秒 / 北緯39.3878667度 東経141.1442528度...