Asteroid with which Earth shares its orbit around the Sun
The orbit of 2010 TK7, the first Earth trojan to be discovered (left). Lagrange points L4 and L5. Lines around the blue triangles represent tadpole orbits(right)
An Earth trojan is an asteroid that orbits the Sun in the vicinity of the Earth–Sun Lagrange pointsL4 (leading 60°) or L5 (trailing 60°), thus having an orbit similar to Earth's. Only two Earth trojans have so far been discovered. The name "trojan" was first used in 1906 for the Jupiter trojans, the asteroids that were observed near the Lagrangian points of Jupiter's orbit.
(614689) 2020 XL5: Discovered by the Pan-STARRS survey in December 2020 and later recognised as an Earth trojan in January 2021.[4] It is 1.2 km in diameter.
No known objects are currently thought to be L5 trojans of Earth.
Searches
An Earth-based search for L5 objects was conducted in 1994, covering 0.35 square degrees of sky, under poor observing conditions.[5] That search failed to detect any objects:
"The limiting sensitivity of this search was magnitude ~22.8, corresponding to C-type asteroids ~350 m in diameter, or S-type asteroids ~175 m in diameter."[5]
In February 2017, the OSIRIS-REx spacecraft performed a search from within the L4 region on its way to asteroid Bennu.[6] No additional Earth trojans were discovered.[7]
In April 2017, the Hayabusa2 spacecraft searched the L5 region while proceeding to asteroid Ryugu,[8] but did not find any asteroids there.[9]
Giant-impact hypothesis
A hypothetical planet-sized Earth trojan the size of Mars, given the name Theia, is thought by proponents of the giant-impact hypothesis to be the origin of the Moon. The hypothesis states that the Moon formed after Earth and Theia collided,[10] showering material from the two planets into space. This material eventually accreted around Earth and into a single orbiting body, the Moon.[11]
At the same time, material from Theia mixed and combined with Earth's mantle and core. Supporters of the giant-impact hypothesis theorise that Earth's large core in relation to its overall volume is as a result of this combination.
Continuing interest in near-Earth asteroids
Astronomy continues to retain interest in the subject. A publication[12]
describes these reasons thus:
The survival to the present day of an ancient [Earth Trojan] population is reasonably assured provided Earth's orbit itself was not strongly perturbed since its formation. It is therefore pertinent to consider that modern theoretical models of planet formation find strongly chaotic orbital evolution during the final stages of assembly of the terrestrial planets and the Earth–Moon system.
Such chaotic evolution may at first sight appear unfavorable to the survival of a primordial population of [Earth trojans]. However, during and after the chaotic assembly of the terrestrial planets, it is likely that a residual planetesimal population, of a few percent of Earth's mass, was present and helped to damp the orbital eccentricities and inclinations of the terrestrial planets to their observed low values, as well as to provide the so-called "late veneer" of accreting planetesimals to account for the abundance patterns of the highly siderophile elements in Earth's mantle.
Such a residual planetesimal population would also naturally lead to a small fraction trapped in the Earth's Trojan zones as Earth's orbit circularized. In addition to potentially hosting an ancient, long-term stable population of asteroids, Earth's Trojan regions also provide transient traps for NEOs that originate from more distal reservoirs of small bodies in the solar system like the main asteroid belt.
Other companions of Earth
Several other small objects have been found on an orbital path associated with Earth. Although these objects are in 1:1 orbital resonance, they are not Earth trojans, because they do not librate around a definite Sun–Earth Lagrangian point, neither L4 nor L5.
Earth has another noted companion, asteroid 3753 Cruithne. About 5 km across, it has a peculiar type of orbital resonance called an overlapping horseshoe, and is probably only a temporary liaison.[13]
^ ab
Whiteley, Robert J.; Tholen, David J. (1998). "CCD search for Lagrangian asteroids of the Earth–Sun system". Icarus. 136 (1): 154–167. Bibcode:1998Icar..136..154W. doi:10.1006/icar.1998.5995. article no. IS985995A. Received 24 November 1997; revised 13 April 1998.