Local system

In mathematics, a local system (or a system of local coefficients) on a topological space X is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group A, and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943.[1]

Local systems are the building blocks of more general tools, such as constructible and perverse sheaves.

Definition

Let X be a topological space. A local system (of abelian groups/modules...) on X is a locally constant sheaf (of abelian groups/of modules...) on X. In other words, a sheaf is a local system if every point has an open neighborhood such that the restricted sheaf is isomorphic to the sheafification of some constant presheaf. [clarification needed]

Equivalent definitions

Path-connected spaces

If X is path-connected,[clarification needed] a local system of abelian groups has the same stalk at every point. There is a bijective correspondence between local systems on X and group homomorphisms

and similarly for local systems of modules. The map giving the local system is called the monodromy representation of .

Proof of equivalence

Take local system and a loop at x. It's easy to show that any local system on is constant. For instance, is constant. This gives an isomorphism , i.e. between and itself. Conversely, given a homomorphism , consider the constant sheaf on the universal cover of X. The deck-transform-invariant sections of gives a local system on X. Similarly, the deck-transform-ρ-equivariant sections give another local system on X: for a small enough open set U, it is defined as

where is the universal covering.

This shows that (for X path-connected) a local system is precisely a sheaf whose pullback to the universal cover of X is a constant sheaf.

This correspondence can be upgraded to an equivalence of categories between the category of local systems of abelian groups on X and the category of abelian groups endowed with an action of (equivalently, -modules).[2]

Stronger definition on non-connected spaces

A stronger nonequivalent definition that works for non-connected X is the following: a local system is a covariant functor

from the fundamental groupoid of to the category of modules over a commutative ring , where typically . This is equivalently the data of an assignment to every point a module along with a group representation such that the various are compatible with change of basepoint and the induced map on fundamental groups.

Examples

  • Constant sheaves such as . This is a useful tool for computing cohomology since in good situations, there is an isomorphism between sheaf cohomology and singular cohomology:

  • Let . Since , there is an family of local systems on X corresponding to the maps :

  • Horizontal sections of vector bundles with a flat connection. If is a vector bundle with flat connection , then there is a local system given by For instance, take and , the trivial bundle. Sections of E are n-tuples of functions on X, so defines a flat connection on E, as does for any matrix of one-forms on X. The horizontal sections are then

    i.e., the solutions to the linear differential equation .

    If extends to a one-form on the above will also define a local system on , so will be trivial since . So to give an interesting example, choose one with a pole at 0:

    in which case for ,
  • An n-sheeted covering map is a local system with fibers given by the set . Similarly, a fibre bundle with discrete fibre is a local system, because each path lifts uniquely to a given lift of its basepoint. (The definition adjusts to include set-valued local systems in the obvious way).
  • A local system of k-vector spaces on X is equivalent to a k-linear representation of .
  • If X is a variety, local systems are the same thing as D-modules which are additionally coherent O_X-modules (see O modules).
  • If the connection is not flat (i.e. its curvature is nonzero), then parallel transport of a fibre F_x over x around a contractible loop based at x_0 may give a nontrivial automorphism of F_x, so locally constant sheaves can not necessarily be defined for non-flat connections.

Cohomology

There are several ways to define the cohomology of a local system, called cohomology with local coefficients, which become equivalent under mild assumptions on X.

  • Given a locally constant sheaf of abelian groups on X, we have the sheaf cohomology groups with coefficients in .
  • Given a locally constant sheaf of abelian groups on X, let be the group of all functions f which map each singular n-simplex to a global section of the inverse-image sheaf . These groups can be made into a cochain complex with differentials constructed as in usual singular cohomology. Define to be the cohomology of this complex.
  • The group of singular n-chains on the universal cover of X has an action of by deck transformations. Explicitly, a deck transformation takes a singular n-simplex to . Then, given an abelian group L equipped with an action of , one can form a cochain complex from the groups of -equivariant homomorphisms as above. Define to be the cohomology of this complex.

If X is paracompact and locally contractible, then .[3] If is the local system corresponding to L, then there is an identification compatible with the differentials,[4] so .

Generalization

Local systems have a mild generalization to constructible sheaves -- a constructible sheaf on a locally path connected topological space is a sheaf such that there exists a stratification of

where is a local system. These are typically found by taking the cohomology of the derived pushforward for some continuous map . For example, if we look at the complex points of the morphism

then the fibers over

are the plane curve given by , but the fibers over are . If we take the derived pushforward then we get a constructible sheaf. Over we have the local systems

while over we have the local systems

where is the genus of the plane curve (which is ).

Applications

The cohomology with local coefficients in the module corresponding to the orientation covering can be used to formulate Poincaré duality for non-orientable manifolds: see Twisted Poincaré duality.

See also

References

  1. ^ Steenrod, Norman E. (1943). "Homology with local coefficients". Annals of Mathematics. 44 (4): 610–627. doi:10.2307/1969099. JSTOR 1969099. MR 0009114.
  2. ^ Milne, James S. (2017). Introduction to Shimura Varieties. Proposition 14.7.
  3. ^ Bredon, Glen E. (1997). Sheaf Theory, Second Edition, Graduate Texts in Mathematics, vol. 25, Springer-Verlag. Chapter III, Theorem 1.1.
  4. ^ Hatcher, Allen (2001). Algebraic Topology, Cambridge University Press. Section 3.H.

Read other articles:

Anggota Komisi Yudisial Republik Indonesia merupakan komposisi keanggotaan yang terdiri atas dua mantan hakim, dua orang praktisi hukum, dua orang akademisi hukum, dan satu anggota masyarakat. Anggota Komisi Yudisial adalah pejabat negara, terdiri dari 7 orang (termasuk Ketua dan Wakil Ketua yang merangkap Anggota). Anggota Komisi Yudisial memegang jabatan selama masa 5 (lima) tahun dan sesudahnya dapat dipilih kembali untuk 1 (satu) kali masa jabatan. Komisi Yudisial Periode 2005–2010 Angg...

 

العلاقات المالطية الناميبية مالطا ناميبيا   مالطا   ناميبيا تعديل مصدري - تعديل   العلاقات المالطية الناميبية هي العلاقات الثنائية التي تجمع بين مالطا وناميبيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة م...

 

Paralimpiade XTuan rumahAtlanta, Amerika SerikatMotoThe Triumph of the Human SpiritJumlah negara104Jumlah atlet3.259Jumlah disiplin517 dalam 20 cabang olahragaPembukaan16 Agustus 1996Penutupan25 Agustus 1996Dibuka olehAl Gore, Wakil Presiden ASKaldronMark WellmanStadionStadion Olimpiade CentennialMusim Panas Olimpiade: Atlanta 1996 ← Barcelona 1992 Sydney 2000 → Musim Dingin ← Lillehammer 1994 Nagano 1998 → Paralimpiade Musim Panas 1996 (Paralimpiade Musim Panas X) ada...

2005 greatest hits album by Natacha AtlasThe Best of Natacha AtlasGreatest hits album by Natacha AtlasReleased23 May 2005GenreRock, World musicLabelMantra (MNTCD #1036)Natacha Atlas chronology Something Dangerous(2003) The Best of Natacha Atlas(2005) Mish Maoul(2006) Professional ratingsReview scoresSourceRatingAllmusic[1]Exclaim!(positive)[2] The Best of Natacha Atlas is a compilation album by Belgian singer Natacha Atlas. It was released by Mantra Recordings on 23 Ma...

 

Vous lisez un « bon article » labellisé en 2016. Robert le Danois Détail du Rouleau généalogique des rois d'Angleterre, vers 1300, British Library, Royal 14 B VI. Biographie Naissance Xe siècleDuché de Normandie Décès hiver 1037 Évêque de l'Église catholique Archevêque de Rouen 987/989 – hiver 1037 Hugues II de Cavalcamp Mauger de Rouen Autres fonctions Fonction laïque Comte d'Évreux modifier  Robert le Danois[Note 1] en latin Rotbertus[1] († 1037) fut...

 

Yevdokiya Andreyevna NikulinaNama asliЕвдокия Андреевна НикулинаLahir8 November 1917Parfyonovo, Distrik Spas-Demensky, Oblast Kaluga, Republik Sosialis Federatif Soviet RusiaMeninggal23 Maret 1993 (usia 76)Rostov-on-Don, Federasi RusiaPengabdian Uni SovietDinas/cabang Angkatan Udara SovietLama dinas1941–1945Perang/pertempuranPerang Patriotik BesarPenghargaanPahlawan Uni Soviet Yevdokiya Andreyevna Nikulina (bahasa Rusia: Евдокия Андреевн...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Juliet Prowse – news · newspapers · books · scholar · JSTOR (June 2022) (Learn how and when to remove this template message) Dancer, actress (1936-1996) Juliet ProwseJuliet Prowse in 1960BornJuliet Anne Prowse(1936-09-25)25 September 1936Bombay, British India (...

 

Overview of the events of 1596 in art This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 1596 in art – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this message) Overview of the events of 1596 in art List of years in art (table) … 1586 1587 1588 1589 1590 1591 1592...

 

Italian motorcycle company GarelliCompany typeJoint-stock companyIndustryMotorcycleFounded1919; 105 years ago (1919), Sesto San GiovanniFounderAdalberto GarelliHeadquartersSesto San Giovanni, ItalyProductsMotorcycles, Scooters, Electric motorcycles and scooters & E-bikeWebsitewww.garelli.com Garelli Capri 1968 Garelli Motorcycles is an Italian moped and motorcycle manufacturer. It was founded in 1919 by Adalberto Garelli (10 July 1886 – 13 January 1968). History At age...

  「俄亥俄」重定向至此。关于其他用法,请见「俄亥俄 (消歧义)」。 俄亥俄州 美國联邦州State of Ohio 州旗州徽綽號:七葉果之州地图中高亮部分为俄亥俄州坐标:38°27'N-41°58'N, 80°32'W-84°49'W国家 美國加入聯邦1803年3月1日,在1953年8月7日追溯頒定(第17个加入联邦)首府哥倫布(及最大城市)政府 • 州长(英语:List of Governors of {{{Name}}}]]) •&...

 

Tour de Californie 2013GénéralitésCourse 8e Tour de CalifornieCompétition UCI America Tour 2013Étapes 8Date 12 - 19 mai 2013Distance 1 172,7 kmPays traversé(s) États-UnisLieu de départ EscondidoLieu d'arrivée Santa RosaÉquipes 16Partants 127Coureurs au départ 127Coureurs à l'arrivée 111Vitesse moyenne 39,463 km/hRésultatsVainqueur Tejay van GarderenDeuxième Michael RogersTroisième Janier AcevedoClassement par points Peter SaganMeilleur grimpeur Carter JonesMeill...

 

Resort village in Saskatchewan, CanadaSouth LakeResort villageResort Village of South LakeSouth LakeCoordinates: 50°40′41″N 105°33′58″W / 50.678°N 105.566°W / 50.678; -105.566[1]CountryCanadaProvinceSaskatchewanCensus division7Rural municipalityRM of Marquis No. 191Incorporated[2]January 1, 1989Government[3] • MayorArt Schick • Governing bodyResort Village Council • AdministratorMelinda Huebn...

Type of motorcycle BMW R1200RTManufacturerBMW MotorradProduction2005-2019PredecessorBMW R1150RTSuccessorBMW R1250RTClassTouring orEngine1,170 cc (71 cu in) 8-valve flat twinBore / stroke101 mm × 73 mm (4.0 in × 2.9 in)Compression ratio12.0:1Power81 kW (109 hp) @ 7,750 rpm[1]Torque120 N⋅m (89 lbf⋅ft) @ 6,000 rpm[1]Transmission6-speed sequential manual transmission, shaft-driveFrame typeLoad-bearing...

 

  لمعانٍ أخرى، طالع ريال (توضيح). ريال عُمانيالإصدار الثاني للريال العُمانيمعلومات عامةالبلد  سلطنة عمانتاريخ الإصدار 1970معوض Said rial (en) رمز العملة ر.عُرمز الأيزو 4217 OMRالمصرف المركزي البنك المركزي العمانيسعر الصرف دولار أمريكي = 0.385 ريال عُمانيالعملات المعدنية 5 بيسات...

 

Wakil Bupati Tulang BawangPetahanaHendriwansyahsejak 18 Desember 2017Masa jabatan5 tahunDibentuk2002Pejabat pertamaA.A. SofyandiSitus webtulangbawangkab.go.id Berikut ini adalah daftar Wakil Bupati Tulang Bawang dari masa ke masa. No Potret Wakil Bupati Mulai Jabatan Akhir Jabatan Prd. Ket. Bupati 1 A.A. Sofyandi 2002 2007 1   Drs. H.Abdurachman SarbiniS.H., M.M. 2 Drs.Agus MardihartonoM.M. 2007 2012 2   3 Heri WardoyoS.H. 17 Desember 2012 28 Oktober 2016 3 [Ket. 1] Ir....

レベルE ジャンル SF、少年漫画 漫画 作者 冨樫義博 出版社 集英社 掲載誌 週刊少年ジャンプ レーベル ジャンプ・コミックス 発表期間 1995年42、46、50号1996年3・4合併、5・6合併、11、15、19、22・23合併、28、32、37・38合併、42、46、51号1997年3・4合併号(月1連載) 巻数 全3巻(ジャンプ・コミックス)全2巻(コミック文庫・SJR) 話数 全16話 アニメ 原作 冨樫義博 監督 加藤...

 

Bible society founded in 1804 See also: United Bible Societies British and Foreign Bible Society (Bible Society)AbbreviationBFBSFormation1804PurposeBible distribution, translation, advocacy, literacy, engagement, productionHeadquartersSwindon, WiltshireRegion served England & WalesWebsitebiblesociety.org.uk The British and Foreign Bible Society, often known in England and Wales as simply the Bible Society, is a non-denominational Christian Bible society with charity status whose purpose i...

 

American music magazine RelixEditorJerry Moore (1974–77)Jeff Tamarkin (1978–79)Toni Brown (1980–2002)Aeve Baldwin (2002–07)Josh Baron (2007–13)Dean Budnick and Mike Greenhaus (2013–)Categoriesmusic magazineFrequency8 per yearFounderLes KippelJerry MooreFirst issueSeptember 1974 (1974-September)CompanyRelix Media GroupCountryUnited StatesBased inNew York CityLanguageEnglishWebsitewww.relix.comISSN0146-3489 Relix, originally and occasionally later Dead Relix, is a magazine...

American politician Isaac SiegelMember of the U.S. House of Representativesfrom New York's 20th districtIn officeMarch 4, 1915 – March 3, 1923Preceded byJacob A. CantorSucceeded byFiorello La Guardia Personal detailsBorn(1880-04-12)April 12, 1880New York City, USDiedJune 29, 1947(1947-06-29) (aged 67)New York City, USPolitical partyRepublicans Isaac Siegel (April 12, 1880 – June 29, 1947) was a United States Representative from New York. Biography He was born...

 

Scouting in New MexicoThe Tooth of Time, an icon of Philmont Scout RanchScouts arriving in Raton  Scouting portal Scouting in New Mexico has had a rich and colorful history, from the 1910s to the present day, serving thousands of youth in programs that suit the environment in which they live. The state is home to the Philmont Scout Ranch. Early history (1910–1950) Burnham with BSA Troop, Carlsbad Caverns, 1941 On May 11, 1941, the Boy Scouts of America honored Major Frederick Russell ...