Liquid–liquid extraction, also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar). There is a net transfer of one or more species from one liquid into another liquid phase, generally from aqueous to organic. The transfer is driven by chemical potential, i.e. once the transfer is complete, the overall system of chemical components that make up the solutes and the solvents are in a more stable configuration (lower free energy). The solvent that is enriched in solute(s) is called extract. The feed solution that is depleted in solute(s) is called the raffinate. Liquid–liquid extraction is a basic technique in chemical laboratories, where it is performed using a variety of apparatus, from separatory funnels to countercurrent distribution equipment called as mixer settlers.[not verified in body] This type of process is commonly performed after a chemical reaction as part of the work-up, often including an acidic work-up.
The term partitioning is commonly used to refer to the underlying chemical and physical processes involved in liquid–liquid extraction, but on another reading may be fully synonymous with it. The term solvent extraction can also refer to the separation of a substance from a mixture by preferentially dissolving that substance in a suitable solvent. In that case, a soluble compound is separated from an insoluble compound or a complex matrix.[not verified in body]
From a hydrometallurgical perspective, solvent extraction is exclusively used in separation and purification of uranium and plutonium, zirconium and hafnium, separation of cobalt and nickel, separation and purification of rare earth elements etc., its greatest advantage being its ability to selectively separate out even very similar metals. One obtains high-purity single metal streams on 'stripping' out the metal value from the 'loaded' organic wherein one can precipitate or deposit the metal value. Stripping is the opposite of extraction: Transfer of mass from organic to aqueous phase.
Liquid–liquid extraction is also widely used in the production of fine organic compounds, the processing of perfumes, the production of vegetable oils and biodiesel, and other industries.[not verified in body] It is among the most common initial separation techniques, though some difficulties result in extracting out closely related functional groups.
Liquid-Liquid extraction can be substantially accelerated in microfluidic devices, reducing extraction and separation times from minutes/hours to mere seconds compared to conventional extractors.[1]
Liquid–liquid extraction is possible in non-aqueous systems: In a system consisting of a molten metal in contact with molten salts, metals can be extracted from one phase to the other. This is related to a mercuryelectrode where a metal can be reduced, the metal will often then dissolve in the mercury to form an amalgam that modifies its electrochemistry greatly. For example, it is possible for sodiumcations to be reduced at a mercury cathode to form sodium amalgam, while at an inert electrode (such as platinum) the sodium cations are not reduced. Instead, water is reduced to hydrogen. A detergent or fine solid can be used to stabilize an emulsion, or third phase.[not verified in body]
In solvent extraction, a distribution ratio (D) is often quoted as a measure of how well-extracted a species is. The distribution ratio is a measure of the total concentration of a solute in the organic phase divided by its concentration in the aqueous phase.[2] The partition or distribution coefficient (Kd) is the ration of solute concentration in each layer upon reaching equilibrium.[3] This distinction between D and Kd is important. The partition coefficient is a thermodynamic equilibrium constant and has a fixed value for the solute’s partitioning between the two phases. The distribution ratio’s value, however, changes with solution conditions if the relative amounts of A and B change. If we know the solute’s equilibrium reactions within each phase and between the two phases, we can derive an algebraic relationship between Kd and D. The partition coefficient and the distribution ratio are identical if the solute has only one chemical form in each phase; however, if the solute exists in more than one chemical form in either phase, then Kd and D usually have different values.[2] Depending on the system, the distribution ratio can be a function of temperature, the concentration of chemical species in the system, and a large number of other parameters. Note that D is related to the Gibbs Free Energy (ΔG) of the extraction process.[4]
In solvent extraction, two immiscible liquids are shaken together. The more polar solutes dissolve preferentially in the more polar solvent, and the less polar solutes in the less polar solvent. In this experiment, the nonpolar halogens preferentially dissolve in the non-polar mineral oil.[5]
Separation factors
The separation factor is one distribution ratio divided by another; it is a measure of the ability of the system to separate two solutes. For instance, if the distribution ratio for nickel (DNi) is 10 and the distribution ratio for silver (DAg) is 100, then the silver/nickel separation factor (SFAg/Ni) is equal to DAg/DNi = SFAg/Ni = 10.[6]
Measures of success
Success of liquid–liquid extraction is measured through separation factors and decontamination factors. The best way to understand the success of an extraction column is through the liquid–liquid equilibrium (LLE) data set. The data set can then be converted into a curve to determine the steady state partitioning behavior of the solute between the two phases. The y-axis is the concentration of solute in the extract (solvent) phase, and the x-axis is the concentration of the solute in the raffinate phase. From here, one can determine steps for optimization of the process.[7]
This is commonly used on the small scale in chemical labs. It is normal to use a separating funnel. Processes include DLLME and direct organic extraction.[8] After equilibration, the extract phase containing the desired solute is separated out for further processing.[9]
Dispersive liquid–liquid microextraction (DLLME)
A process used to extract small amounts of organic compounds from water samples.[10] This process is done by injecting small amounts of an appropriate extraction solvent (C2Cl4) and a disperser solvent (acetone) into the aqueous solution. The resulting solution is then centrifuged to separate the organic and aqueous layers. This process is useful in extraction organic compounds such as organochloride and organophsophorus pesticides, as well as substituted benzene compounds from water samples.[10]
Direct organic extraction
By mixing partially organic soluble samples in organic solvent (toluene, benzene, xylene), the organic soluble compounds will dissolve into the solvent and can be separated using a separatory funnel. This process is valuable in the extraction of proteins and specifically phosphoprotein and phosphopeptide phosphatases.[11]
Another example of this application is extracting anisole from a mixture of water and 5% acetic acid using ether, then the anisole will enter the organic phase. The two phases would then be separated.[citation needed] The acetic acid can then be scrubbed (removed) from the organic phase by shaking the organic extract with sodium bicarbonate. The acetic acid reacts with the sodium bicarbonate to form sodium acetate, carbon dioxide, and water.
Caffeine can also be extracted from coffee beans and tea leaves using a direct organic extraction. The beans or leaves can be soaked in ethyl acetate which favorably dissolves the caffeine, leaving a majority of the coffee or tea flavor remaining in the initial sample.[12]
Multistage countercurrent continuous processes
These are commonly used in industry for the processing of metals such as the lanthanides; because the separation factors between the lanthanides are so small many extraction stages are needed.[13] In the multistage processes, the aqueous raffinate from one extraction unit is fed to the next unit as the aqueous feed, while the organic phase is moved in the opposite direction. Hence, in this way, even if the separation between two metals in each stage is small, the overall system can have a higher decontamination factor.
Multistage countercurrent arrays have been used for the separation of lanthanides. For the design of a good process, the distribution ratio should be not too high (>100) or too low (<0.1) in the extraction portion of the process. It is often the case that the process will have a section for scrubbing unwanted metals from the organic phase, and finally a stripping section to obtain the metal back from the organic phase.
Mixer–settlers
Battery of mixer-settlers counter currently interconnected. Each mixer-settler unit provides a single stage of extraction. A mixer settler consists of a first stage that mixes the phases together followed by a quiescent settling stage that allows the phases to separate by gravity.
A novel settling device, Sudhin BioSettler, can separate an oil-water emulsion continuously at a much faster rate than simple gravity settlers. In this photo, an oil-water emulsion, stirred by an impeller in an external reservoir and pumped continuously into the two bottom side ports of BioSettler, is separated very quickly into a clear organic (mineral oil) layer exiting via the top of BioSettler and an aqueous (coloured with a red food dye) layer being pumped out continuously from the bottom of BioSettler.
In the multistage countercurrent process, multiple mixer settlers are installed with mixing and settling chambers located at alternating ends for each stage (since the outlet of the settling sections feed the inlets of the adjacent stage's mixing sections). Mixer-settlers are used when a process requires longer residence times and when the solutions are easily separated by gravity. They require a large facility footprint, but do not require much headspace, and need limited remote maintenance capability for occasional replacement of mixing motors. (Colven, 1956; Davidson, 1957)[14]
Centrifugal extractors
Centrifugal extractors mix and separate in one unit. Two liquids will be intensively mixed between the spinning rotor and the stationary housing at speeds up to 6000 RPM. This develops great surfaces for an ideal mass transfer from the aqueous phase into the organic phase. At 200–2000 g, both phases will be separated again. Centrifugal extractors minimize the solvent in the process, optimize the product load in the solvent and extract the aqueous phase completely. Counter current and cross current extractions are easily established.[15]
Extraction without chemical change
Some solutes such as noble gases can be extracted from one phase to another without the need for a chemical reaction (see absorption). This is the simplest type of solvent extraction. When a solvent is extracted, two immiscible liquids are shaken together. The more polar solutes dissolve preferentially in the more polar solvent, and the less polar solutes in the less polar solvent. Some solutes that do not at first sight appear to undergo a reaction during the extraction process do not have distribution ratio that is independent of concentration. A classic example is the extraction of carboxylic acids (HA) into nonpolar media such as benzene. Here, it is often the case that the carboxylic acid will form a dimer in the organic layer so the distribution ratio will change as a function of the acid concentration (measured in either phase).
For this case, the extraction constant k is described by k = [HAorganic]2/[HAaqueous]
Using solvent extraction it is possible to extract uranium, plutonium, thorium and many rare earth elements from acid solutions in a selective way by using the right choice of organic extracting solvent and diluent. One solvent used for this purpose is the organophosphatetributyl phosphate (TBP). The PUREX process that is commonly used in nuclear reprocessing uses a mixture of tri-n-butyl phosphate and an inerthydrocarbon (kerosene), the uranium(VI) are extracted from strong nitric acid and are back-extracted (stripped) using weak nitric acid. An organic soluble uranium complex [UO2(TBP)2(NO3)2] is formed, then the organic layer bearing the uranium is brought into contact with a dilute nitric acid solution; the equilibrium is shifted away from the organic soluble uranium complex and towards the free TBP and uranyl nitrate in dilute nitric acid. The plutonium(IV) forms a similar complex to the uranium(VI), but it is possible to strip the plutonium in more than one way; a reducing agent that converts the plutonium to the trivalent oxidation state can be added. This oxidation state does not form a stable complex with TBP and nitrate unless the nitrate concentration is very high (circa 10 mol/L nitrate is required in the aqueous phase). Another method is to simply use dilute nitric acid as a stripping agent for the plutonium. This PUREX chemistry is a classic example of a solvationextraction. In this case, DU = k [TBP]2[NO3-]2.
Ion exchange mechanism
Another extraction mechanism is known as the ion exchange mechanism. Here, when an ion is transferred from the aqueous phase to the organic phase, another ion is transferred in the other direction to maintain the charge balance. This additional ion is often a hydrogen ion; for ion exchange mechanisms, the distribution ratio is often a function of pH. An example of an ion exchange extraction would be the extraction of americium by a combination of terpyridine and a carboxylic acid in tert-butylbenzene. In this case
DAm = k [terpyridine]1[carboxylic acid]3[H+]−3
Another example is the extraction of zinc, cadmium, or lead by a dialkyl phosphinic acid (R2PO2H) into a nonpolar diluent such as an alkane. A non-polar diluent favours the formation of uncharged non-polar metal complexes.
Some extraction systems are able to extract metals by both the solvation and ion exchange mechanisms; an example of such a system is the americium (and lanthanide) extraction from nitric acid by a combination of 6,6'-bis-(5,6-dipentyl-1,2,4-triazin-3-yl)-2,2'-bipyridine and 2-bromohexanoic acid in tert-butylbenzene. At both high- and low-nitric acid concentrations, the metal distribution ratio is higher than it is for an intermediate nitric acid concentration.
Ion pair extraction
It is possible by careful choice of counterion to extract a metal. For instance, if the nitrate concentration is high, it is possible to extract americium as an anionic nitrate complex if the mixture contains a lipophilicquaternary ammonium salt.
An example that is more likely to be encountered by the 'average' chemist is the use of a phase transfer catalyst. This is a charged species that transfers another ion to the organic phase. The ion reacts and then forms another ion, which is then transferred back to the aqueous phase.
For instance, the 31.1 kJmol−1 is required to transfer an acetate anion into nitrobenzene,[16] while the energy required to transfer a chloride anion from an aqueous phase to nitrobenzene is 43.8 kJ mol−1.[17] Hence, if the aqueous phase in a reaction is a solution of sodium acetate while the organic phase is a nitrobenzene solution of benzyl chloride, then, when a phase transfer catalyst, the acetate anions can be transferred from the aqueous layer where they react with the benzylchloride to form benzyl acetate and a chloride anion. The chloride anion is then transferred to the aqueous phase. The transfer energies of the anions contribute to that given out by the reaction.
A 43.8 to 31.1 kJ mol−1 = 12.7 kJ mol−1 of additional energy is given out by the reaction when compared with energy if the reaction had been done in nitrobenzene using one equivalent weight of a tetraalkylammonium acetate.[18]
Polymer–polymer systems. In a Polymer–polymer system, both phases are generated by a dissolved polymer. The heavy phase will generally be a polysaccharide, and the light phase is generally Polyethylene glycol (PEG). Traditionally, the polysaccharide used is dextran. However, dextran is relatively expensive, and research has been exploring using less expensive polysaccharides to generate the heavy phase. If the target compound being separated is a protein or enzyme, it is possible to incorporate a ligand to the target into one of the polymer phases. This improves the target's affinity to that phase, and improves its ability to partition from one phase into the other. This, as well as the absence of solvents or other denaturing agents, makes polymer–polymer extractions an attractive option for purifying proteins. The two phases of a polymer–polymer system often have very similar densities, and very low surface tension between them. Because of this, demixing a polymer–polymer system is often much more difficult than demixing a solvent extraction. Methods to improve the demixing include centrifugation, and application of an electric field.
Polymer–salt systems. Aqueous two-phase systems can also be generated by generating the heavy phase with a concentrated salt solution. The polymer phase used is generally still PEG. Generally, a kosmotropic salt, such as Na3PO4 is used, however PEG–NaCl systems have been documented when the salt concentration is high enough. Since polymer–salt systems demix readily they are easier to use. However, at high salt concentrations, proteins generally either denature, or precipitate from solution. Thus, polymer–salt systems are not as useful for purifying proteins.
Ionic liquids systems. Ionic liquids are ionic compounds with low melting points. While they are not technically aqueous, recent research has experimented with using them in an extraction that does not use organic solvents.
The ability to purify DNA from a sample is important for many modern biotechnology processes. However, samples often contain nucleases that degrade the target DNA before it can be purified. It has been shown that DNA fragments will partition into the light phase of a polymer–salt separation system. If ligands known to bind and deactivate nucleases are incorporated into the polymer phase, the nucleases will then partition into the heavy phase and be deactivated. Thus, this polymer–salt system is a useful tool for purifying DNA from a sample while simultaneously protecting it from nucleases.[citation needed]
Food industry
The PEG–NaCl system has been shown to be effective at partitioning small molecules, such as peptides and nucleic acids. These compounds are often flavorants or odorants. The system could then be used by the food industry to isolate or eliminate particular flavors. Caffeine extraction used to be done using liquid–liquid extraction, specifically direct and indirect liquid–liquid extraction (Swiss Water Method), but has since moved towards super-critical CO2 as it is cheaper and can be done on a commercial scale.[19][20]
Analytical chemistry
Often there are chemical species present or necessary at one stage of sample processing that will interfere with the analysis. For example, some air monitoring is performed by drawing air through a small glass tube filled with sorbent particles that have been coated with a chemical to stabilize or derivatize the analyte of interest. The coating may be of such a concentration or characteristics that it would damage the instrumentation or interfere with the analysis. If the sample can be extracted from the sorbent using a nonpolar solvent (such as toluene or carbon disulfide), and the coating is polar (such as HBr or phosphoric acid) the dissolved coating will partition into the aqueous phase. Clearly the reverse is true as well, using polar extraction solvent and a nonpolar solvent to partition a nonpolar interferent. A small aliquot of the organic phase (or in the latter case, polar phase) can then be injected into the instrument for analysis.
Purification of amines
Amines (analogously to ammonia) have a lone pair of electrons on the nitrogen atom that can form a relatively weak bond to a hydrogen atom. It is therefore the case that under acidic conditions amines are typically protonated, carrying a positive charge and under basic conditions they are typically deprotonated and neutral. Amines of sufficiently low molecular weight are rather polar and can form hydrogen bonds with water and therefore will readily dissolve in aqueous solutions. Deprotonated amines on the other hand, are neutral and have greasy, nonpolar organic substituents, and therefore have a higher affinity for nonpolar inorganic solvents. As such purification steps can be carried out where an aqueous solution of an amine is neutralized with a base such as sodium hydroxide, then shaken in a separatory funnel with a nonpolar solvent that is immiscible with water. The organic phase is then drained off. Subsequent processing can recover the amine by techniques such as recrystallization, evaporation or distillation; subsequent extraction back to a polar phase can be performed by adding HCl and shaking again in a separatory funnel (at which point the ammonium ion could be recovered by adding an insoluble counterion), or in either phase, reactions could be performed as part of a chemical synthesis.
Temperature swing solvent extraction is an experimental technique for the desalination of drinking water. It has been used to remove up to 98.5% of the salt content in water, and is able to process hypersaline brines that cannot be desalinated using reverse osmosis.[21]
It is important to investigate the rate at which the solute is transferred between the two phases, in some cases by an alteration of the contact time it is possible to alter the selectivity of the extraction. For instance, the extraction of palladium or nickel can be very slow because the rate of ligand exchange at these metal centers is much lower than the rates for iron or silver complexes.
If a complexing agent is present in the aqueous phase then it can lower the distribution ratio. For instance, in the case of iodine being distributed between water and an inert organic solvent such as carbon tetrachloride then the presence of iodide in the aqueous phase can alter the extraction chemistry: instead of being a constant it becomes
= k[I2 (organic)]/[I2 (aq)][I− (aq)]
This is because the iodine reacts with the iodide to form I3−. The I3− anion is an example of a polyhalideanion that is quite common.
Industrial process design
In a typical scenario, an industrial process will use an extraction step in which solutes are transferred from the aqueous phase to the organic phase; this is often followed by a scrubbing stage in which unwanted solutes are removed from the organic phase, then a stripping stage in which the wanted solutes are removed from the organic phase. The organic phase may then be treated to make it ready for use again.[22][23]
After use, the organic phase may be subjected to a cleaning step to remove any degradation products; for instance, in PUREX plants, the used organic phase is washed with sodium carbonate solution to remove any dibutyl hydrogen phosphate or butyl dihydrogen phosphate that might be present.
Liquid-liquid equilibrium calculations
In order to calculate the phase equilibrium, it is necessary to use a thermodynamic model such as NRTL, UNIQUAC, etc. The corresponding parameters of these models can be obtained from literature (e.g. Dechema Chemistry Data Series, Dortmund Data Bank, etc.) or by a correlation process of experimental data.[24][25][26][27]
Copper can be extracted using hydroxyoximes as extractants, a recent paper describes an extractant that has a good selectivity for copper over cobalt and nickel.[32]
Neodymium
The rare earth element Neodymium is extracted by di(2-ethyl-hexyl)phosphoric acid into hexane by an ion exchange mechanism.[33]
Nickel
Nickel can be extracted using di(2-ethyl-hexyl)phosphoric acid and tributyl phosphate in a hydrocarbon diluent (Shellsol).[34]
Palladium and platinum
Dialkyl sulfides, tributyl phosphate and alkyl amines have been used for extracting palladium and platinum.[35][36]
Polonium
Polonium is produced in reactors from natural 209Bi, bombarded with neutrons, creating 210Bi, which then decays to 210Po via beta-minus decay. The final purification is done pyrochemically followed by liquid-liquid extraction vs sodium hydroxide at 500 °C.[37]
Zinc and cadmium
Zinc and cadmium are both extracted by an ion exchange process, the N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) acts as a masking agent for the zinc and an extractant for the cadmium.[38] In the modified Zincex process, zinc is separated from most divalent ions by solvent extraction. D2EHPA (Di (2) ethyl hexyl phosphoric acid) is used for this. A zinc ion replaces the proton from two D2EHPA molecules. To strip the zinc from the D2EHPA, sulfuric acid is used, at a concentration of above 170g/L (typically 240-265g/L).
Lithium
Lithium extraction is more popular due to the high demand of lithium-ion batteries. TBP (Tri-butyl phosphate) and FeCl3 are mostly used to extract lithium from brine (with high Li/Mg ratio).[39] Alternatively, Cyanex 272 was also used to extract lithium. The mechanism of lithium extraction was found differently from other metals, such as cobalt, due to the weak coordinating bonding between lithium ions and extractants.[40]
^Touma, J. G.; Coblyn, M.; Freiberg, L. J.; Kowall, C.; Zoebelein, A.; Jovanovic, G. N. (2024). "Intensification of Solvent Extraction in an Additively Manufactured Microfluidic Separator". Chemical Engineering Journal. 484: 149285. doi:10.1016/j.cej.2024.149285.
^ abRezaee, Mohammad; Assadi, Yaghoub; Milani Hosseini, Mohammad-Reza; Aghaee, Elham; Ahmadi, Fardin; Berijani, Sana (2006). "Determination of organic compounds in water using dispersive liquid–liquid microextraction". Journal of Chromatography A. 1116 (1–2): 1–9. doi:10.1016/j.chroma.2006.03.007. ISSN0021-9673. PMID16574135.
^Scholz, F.; S. Komorsky-Lovric; M. Lovric (February 2000). "A new access to Gibbs energies of transfer of ions across liquid|liquid interfaces and a new method to study electrochemical processes at well-defined three-phase junctions". Electrochemistry Communications. 2 (2): 112–118. doi:10.1016/S1388-2481(99)00156-3.
^Peker, Hulya; Srinivasan, M. P.; Smith, J. M.; McCoy, Ben J. (1992). "Caffeine extraction rates from coffee beans with supercritical carbon dioxide". AIChE Journal. 38 (5): 761–770. doi:10.1002/aic.690380513. ISSN0001-1541.
^Reyes-Labarta, J.A.; Olaya, M.M.; Gómez, A.; Marcilla, A. (1999). "New method for quaternary systems liquid-liquid extraction tray to tray design". Industrial & Engineering Chemistry Research. 38 (8): 3083–3095. doi:10.1021/ie9900723.
^Reyes-Labarta, J.A.; Grossmann, I.E (2001). "Disjunctive Programming Models for the Optimal Design of Liquid-Liquid Multistage Extractors and Separation Sequences". AIChE Journal. 47 (10): 2243–2252. doi:10.1002/aic.690471011.
^Reyes-Labarta, J.A.; Olaya, M.M.; Velasco, R.; Serrano, M.D.; Marcilla, A. (2009). "Correlation of the Liquid-Liquid Equilibrium Data for Specific Ternary Systems with One or Two Partially Miscible Binary Subsystems". Fluid Phase Equilibria. 278 (1–2): 9–14. doi:10.1016/j.fluid.2008.12.002.
^Marcilla, Antonio; Reyes-Labarta, Juan A.; Olaya, M.Mar (2017). "Should we trust all the published LLE correlation parameters in phase equilibria? Necessity of their Assessment Prior to Publication". Fluid Phase Equilibria. 433: 243–252. doi:10.1016/j.fluid.2016.11.009. hdl:10045/66521.
^Sanchez, J.M.; Hidalgo, M.; Salvadó, V.; Valiente, M. (1999). "Extraction of Neodymium(III) at Trace Level with Di(2-Ethyl-Hexyl)Phosphoric Acid in Hexane". Solvent Extraction and Ion Exchange. 17 (3): 455–474. doi:10.1080/07366299908934623. ISSN0736-6299.
^Giridhar, P.; Venkatesan, K.A.; Srinivasan, T.G.; Vasudeva Rao, P.R. (2006). "Extraction of fission palladium by Aliquat 336 and electrochemical studies on direct recovery from ionic liquid phase". Hydrometallurgy. 81 (1): 30–39. Bibcode:2006HydMe..81...30G. doi:10.1016/j.hydromet.2005.10.001. ISSN0304-386X.
^Schulz, Wallace W.; Schiefelbein, Gary F.; Bruns, Lester E. (1969). "Pyrochemical Extraction of Polonium from Irradiated Bismuth Metal". Ind. Eng. Chem. Process Des. Dev. 8 (4): 508–515. doi:10.1021/i260032a013.
^K. Takeshita; K. Watanabe; Y. Nakano; M. Watanabe (2003). "Solvent extraction separation of Cd(II) and Zn(II) with the organophosphorus extractant D2EHPA and the aqueous nitrogen-donor ligand TPEN". Hydrometallurgy. 70 (1–3): 63–71. Bibcode:2003HydMe..70...63T. doi:10.1016/s0304-386x(03)00046-x.
B.L. Karger, 2014, "Separation and Purification: Single-stage versus multistage processes" and "Separation and Purification: Separations Based on Equilibrium", Encyclopædia Britannica, see [1] and [2], accessed 12 May 2014.
Gunt Hamburg, 2014, "Thermal Process Engineering: liquid–liquid extraction and solid-liquid extraction", see [3], accessed 12 May 2014.
G.W. Stevens, T.C., Lo, & M. H. I. Baird, 2007, "Extraction, liquid–liquid", in Kirk-Othmer Encyclopedia of Chemical Technology, doi:10.1002/0471238961.120917211215.a01.pub2, accessed 12 May 2014.
Colin Poole & Michael Cooke, 2000, "Extraction", in Encyclopedia of Separation Science, 10 Vols., ISBN978-0-12-226770-3, see [4], accessed 12 May 2014.
Sikdar, Cole, et al. Aqueous Two-Phase Extractions in Bioseparations: An Assessment. Biotechnology 9:254. 1991
Szlag, Giuliano. A Low-Cost Aqueous Two Phase System for Enzyme Extraction. Biotechnology Techniques 2:4:277. 1988
Dreyer, Kragl. Ionic Liquids for Aqueous Two-Phase Extraction and Stabilization of Enzymes. Biotechnology and Bioengineering. 99:6:1416. 2008
Boland. Aqueous Two-Phase Systems: Methods and Protocols. Pg 259-269
Bad Girl Good GirlSingel oleh Miss Adari album Bad But Good, A ClassBahasaKoreanDirilis1 Juli 2010Direkam2010GenreK-Pop, Pop, dance-popDurasi3:38LabelAQ EntertainmentProduserPark Jin-young Bad Girl Good Girl adalah sebuah lagu oleh Miss A, girl group Korea Selatan, dari album mini pertama mereka Bad But Good. Bad Girl Good Girl telah menduduki berbagai tangga lagu di Korea Selatan, mengalahkan artis veteran seperti Son Dam Bi dan Baek Ji-young.[1][2] Rilis Pada tanggal 1 Juli ...
Play by Richard Brinsley Sheridan For other uses, see The School for Scandal (disambiguation). The School for ScandalRobert Baddeley as Moses(painting by Johann Zoffany, c.1781)Written byRichard Brinsley SheridanCharactersSir Peter TeazleLady TeazleSir Oliver SurfaceJoseph SurfaceCharles SurfaceMariaLady SneerwellSir Benjamin BackbiteSir Harry BumperCarelessRowleySnakeTripMrs CandourCrabtreeMosesDate premiered8 May 1777Theatre RoyalPlace premiered United KingdomOriginal languageEnglishGe...
Voce principale: Vicenza Calcio. Vicenza CalcioStagione 2001-2002Sport calcio Squadra Vicenza Allenatore Eugenio Fascetti[1] poi Adelio Moro e Fabio Viviani Presidente Aronne Miola Serie B9º posto Coppa ItaliaPrimo turno Maggiori presenzeCampionato: Sterchele (37) Miglior marcatoreCampionato: Margiotta (15) StadioStadio Romeo Menti 2000-2001 2002-2003 Si invita a seguire il modello di voce Rosa del L.R. Vicenza, dopo il mercato invernale (gennaio 2002), per la stagione 2001-200...
Bandar Udara Mozes KilanginTerminal Baru Bandara Mozes KilanginIATA: TIMICAO: WAYY (sebelumnya WABP)InformasiJenisPublikPemilikPemerintah IndonesiaMelayaniKabupaten MimikaLokasiTimika, Papua Tengah, IndonesiaKoordinat04°31′44.76″S 136°53′11.76″E / 4.5291000°S 136.8866000°E / -4.5291000; 136.8866000Situs webtimikaairport.comPetaTIMLokasi di Papua TengahTampilkan peta Papua TengahTIMLokasi di IndonesiaTampilkan peta IndonesiaLandasan pacu Arah Panjang Permuka...
Market town in North Yorkshire, England For other uses, see Pickering (disambiguation). Human settlement in EnglandPickeringPickering Market PlacePickeringLocation within North YorkshirePopulation6,830 (2011 Census)[1]OS grid referenceSE797838• London195 mi (314 km) SUnitary authorityNorth YorkshireCeremonial countyNorth YorkshireRegionYorkshire and the HumberCountryEnglandSovereign stateUnited KingdomPost townPICKERINGPostcode ...
This article reflects continually changing information from hundreds of sources. You can help by updating items to more recent figures from official sources. Cartogram of the world's population in 2018; each square represents 500,000 people. This is a list of countries and dependencies by population. It includes sovereign states, inhabited dependent territories and, in some cases, constituent countries of sovereign states, with inclusion within the list being primarily based on the ISO stand...
American restaurateurs Kiradjieff brothers in Cincinnati, 1921. From left to right: Athanas, Argir and Ivan.[note 1] Tom Kiradjieff and John Kiradjieff were Bulgarian American restaurateurs and Macedonian immigrants, credited for their creation of a regional specialty dish known as the Cincinnati chili.[1][2][3] History The brothers were born in the town of Hrupishta,[4] in the Ottoman Empire,[note 2][5] to Bulgarian parents.[6]&...
Historic province in northwestern Ethiopia Location of Begemder within the Ethiopian Empire Guzara royal castle; built by Emperor Minas in 1560 Begemder (Amharic: በጌምድር; also known as Gondar or Gonder) was a province in northwest Ethiopia. The alternative names come from its capital during the 20th century, Gondar. Etymology A plausible source for the name Bega is that the word means dry in the local language, while another possible interpretation could be sheep, where rearing of sh...
Scottish lieutenancy area and former local government district WigtownDistrict (1975–1996)Lieutenancy area (1975–)History • Created16 May 1975 • Abolished31 March 1996 • Succeeded byDumfries and Galloway • HQStranraer Contained within • RegionDumfries and Galloway Wigtown is a lieutenancy area in south-west Scotland and a committee area of Dumfries and Galloway Council. From 1975 until 1996 it was also a local governme...
IrelandAssociationHockey IrelandConfederationEHF (Europe)Head CoachSean DancerAssistant coach(es)Sarah KelleherDavid PassmoreFacundo QuirogaManagerChristine O'SheaCaptainKatie Mullan Home Away FIH rankingCurrent 12 2 (8 June 2024)[1]Olympic GamesAppearances1 (first in 2020)Best result10th (2020)World CupAppearances5 (first in 1986)Best result2nd (2018)EuroHockey ChampionshipAppearances14 (first in 1984)Best result5th (1984, 2005, 2009), 2019) Medal record World Cup 2018 London The Ir...
У этого термина существуют и другие значения, см. Спецназ России.Эта статья опирается на источники, аффилированные с предметом статьи или иной заинтересованной стороной. Это может вызвать сомнения в нейтральности и проверяемости представленной информации. Такие ист�...
1971 American film by William Friedkin The French ConnectionTheatrical release posterDirected byWilliam FriedkinScreenplay byErnest TidymanBased onThe French Connectionby Robin MooreProduced byPhilip D'AntoniStarring Gene Hackman Fernando Rey Roy Scheider Tony Lo Bianco Marcel Bozzuffi CinematographyOwen RoizmanEdited byGerald B. GreenbergMusic byDon EllisProductioncompanies Philip D'Antoni Productions Schine-Moore Productions Distributed by20th Century-FoxRelease date October 7, 19...
You can help expand this article with text translated from the corresponding article in Czech. (February 2024) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text that appears unreliable or low...
A creative figure's attitude toward both a subject and also an audience This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2024) (Learn how and when to remove this message) This article needs additiona...
Mexican football club Football clubFaraones de TexcocoFull nameClub Faraones de TexcocoNickname(s)Faraones (The pharaohs)FoundedJuly 2017; 7 years ago (2017-07)GroundEstadio Municipal Claudio SuárezTexcoco, State of MexicoCapacity4,000ChairmanAlejandro GonzálezManagerFrancisco CisnerosLeagueLiga TDP - Group VII2023–241st – Group 8 (Promoted) Home colours Away colours Faraones de Texcoco is a Mexican football club that plays in the Liga Premier – Serie A. Th...
Voce principale: Ballspielverein Borussia 09 Dortmund. Ballspielverein Borussia 09 DortmundStagione 2011-2012Sport calcio Squadra Borussia Dortmund Allenatore Jürgen Klopp All. in seconda Peter Krawietz Bundesliga1º Coppa di GermaniaVincitrice SupercoppaFinale Champions LeagueFase a gironi Maggiori presenzeCampionato: Lewandowski (34)Totale: Lewandowski (47) Miglior marcatoreCampionato: Lewandowski (22)Totale: Lewandowski (30) StadioSignal Iduna Park Maggior numero di spettatori80...