Isotopes of promethium
Promethium (61 Pm) is an artificial element , except in trace quantities as a product of spontaneous fission of 238 U and 235 U and alpha decay of 151 Eu , and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes . It was first synthesized in 1945.
Forty-one radioisotopes have been characterized, with the most stable being 145 Pm with a half-life of 17.7 years, 146 Pm with a half-life of 5.53 years, and 147 Pm with a half-life of 2.6234 years. All of the remaining radioactive isotopes have half-lives that are less than 365 days, and the majority of these have half-lives that are less than 30 seconds. This element also has 18 meta states with the most stable being 148m Pm (t1/2 41.29 days), 152m2 Pm (t1/2 13.8 minutes) and 152m Pm (t1/2 7.52 minutes).
The isotopes of promethium range in mass number from 126 to 166. The primary decay mode for 146 Pm and lighter isotopes is electron capture , and the primary mode for heavier isotopes is beta decay . The primary decay products before 146 Pm are isotopes of neodymium , and the primary products after are isotopes of samarium .
List of isotopes
Nuclide[ n 1]
Z
N
Isotopic mass (Da ) [ 2] [ n 2] [ n 3]
Half-life [ 1] [ n 4]
Decay mode [ 1] [ n 5]
Daughter isotope [ n 6] [ n 7]
Spin andparity [ 1] [ n 8] [ n 4]
Isotopic abundance
Excitation energy[ n 4]
128 Pm
61
67
127.94823(32)#
1.0(3) s
β+ (?%)
128 Nd
4+#
β+ , p (?%)
127 Pr
129 Pm
61
68
128.94291(32)#
2.4(9) s
β+
129 Nd
5/2+#
130 Pm
61
69
129.94045(22)#
2.6(2) s
β+ (?%)
130 Nd
(5+, 6+, 4+)
β+ , p (?%)
129 Pr
131 Pm
61
70
130.93583(22)#
6.3(8) s
β+
131 Nd
(11/2−)
132 Pm
61
71
131.93384(16)#
6.2(6) s
β+
132 Nd
(3+)
β+ , p (5×10−5 %)
131 Pr
133 Pm
61
72
132.929782(54)
13.5(21) s
β+
133 Nd
(3/2+)
133m Pm
129.7(7) keV
8# s
(11/2−)
134 Pm
61
73
133.928326(45)
22(1) s
β+
134 Nd
(5+)
134m1 Pm
50(50)# keV[ n 9]
~5 s
β+
134 Nd
(2+)
134m2 Pm
120(50)# keV
20(1) μs
IT
134 Pm
(7−)
135 Pm
61
74
134.924785(89)
49(3) s
β+
135 Nd
(3/2+, 5/2+)
135m Pm
240(100)# keV
40(3) s
β+
135 Nd
(11/2−)
136 Pm
61
75
135.923596(74)
107(6) s
β+
136 Nd
7+#
136m1 Pm[ n 9]
100(120) keV
90(35) s
β+
136 Nd
2+#
136m2 Pm
42.7(2) keV
1.5(1) μs
IT
136 Pm
7−#
137 Pm
61
76
136.920480(14)
2# min
5/2−#
137m Pm
160(50) keV
2.4(1) min
β+
137 Nd
11/2−
138 Pm
61
77
137.919576(12)
3.24(5) min
β+
138 Nd
3−#
139 Pm
61
78
138.916799(15)
4.15(5) min
β+
139 Nd
(5/2)+
139m Pm
188.7(3) keV
180(20) ms
IT
139 Pm
(11/2)−
140 Pm
61
79
139.916036(26)
9.2(2) s
β+
140 Nd
1+
140m Pm
429(28) keV
5.95(5) min
β+
140 Nd
8−
141 Pm
61
80
140.913555(15)
20.90(5) min
β+
141 Nd
5/2+
141m1 Pm
628.62(7) keV
630(20) ns
IT
141 Pm
11/2−
141m2 Pm
2530.75(17) keV
>2 μs
IT
141 Pm
(23/2+)
142 Pm
61
81
141.912891(25)
40.5(5) s
β+ (77.1%)
142 Nd
1+
EC (22.9%)
142 Nd
142m1 Pm
883.17(16) keV
2.0(2) ms
IT
142 Pm
(8)−
142m2 Pm
2828.7(6) keV
67(5) μs
IT
142 Pm
(13−)
143 Pm
61
82
142.9109381(32)
265(7) d
EC
143 Nd
5/2+
β+ (<5.7×10−6 %)
144 Pm
61
83
143.9125962(31)
363(14) d
EC
144 Nd
5−
β+ (<8×10−5 %)
144m1 Pm
840.90(5) keV
780(200) ns
IT
144 Pm
(9)+
144m2 Pm
8595.8(22) keV
~2.7 μs
IT
144 Pm
(27+)
145 Pm
61
84
144.9127557(30)
17.7(4) y
EC
145 Nd
5/2+
α (2.8×10−7 %)
141 Pr
146 Pm
61
85
145.9147022(46)
5.53(5) y
EC (66.0%)
146 Nd
3−
β− (34.0%)
146 Sm
147 Pm[ n 10]
61
86
146.9151449(14)
2.6234(2) y
β−
147 Sm
7/2+
Trace[ n 11]
148 Pm
61
87
147.9174811(61)
5.368(7) d
β−
148 Sm
1−
148m Pm
137.9(3) keV
41.29(11) d
β− (95.8%)
148 Sm
5−, 6−
IT (4.2%)
148 Pm
149 Pm[ n 10]
61
88
148.9183415(23)
53.08(5) h
β−
149 Sm
7/2+
149m Pm
240.214(7) keV
35(3) μs
IT
149 Pm
11/2−
150 Pm
61
89
149.920990(22)
2.698(15) h
β−
150 Sm
(1−)
151 Pm[ n 10]
61
90
150.9212166(49)
28.40(4) h
β−
151 Sm
5/2+
152 Pm
61
91
151.923505(28)
4.12(8) min
β−
152 Sm
1+
152m Pm
140(90) keV[ n 9]
7.52(8) min
β−
152 Sm
4(−)
153 Pm
61
92
152.9241563(97)
5.25(2) min
β−
153 Sm
5/2−
154 Pm
61
93
153.926713(27)
2.68(7) min
β−
154 Sm
(4+)
154m Pm[ n 9]
−230(50) keV
1.73(10) min
β−
154 Sm
(1−)
155 Pm
61
94
154.9281370(51)
41.5(2) s
β−
155 Sm
(5/2−)
156 Pm
61
95
155.9311141(13)
27.4(5) s
β−
156 Sm
4+
156m Pm
150.30(10) keV
2.3(20) s
IT (98%)
156 Pm
1+#
β− (2%)
156 Sm
157 Pm
61
96
156.9331213(75)
10.56(10) s
β−
157 Sm
(5/2−)
158 Pm
61
97
157.93654695(95)
4.8(5) s
β−
158 Sm
(0+,1+)#
158m Pm
150(50)# keV
>16 μs
IT
158 Pm
5+#
159 Pm
61
98
158.939286(11)
1.648+0.43 −0.42 s[ 3]
β−
159 Sm
(5/2−)
159m Pm
1465.0(5) keV
4.42(17) μs
IT
159 Pm
17/2+#
β− , n (<0.6%)[ 3]
158 Sm
160 Pm
61
99
159.9432153(22)
874+16 −12 ms[ 3]
β−
160 Sm
6−#
β− , n (<0.1%)[ 3]
159 Sm
160m Pm
191(11) keV
>700 ms
1−#
161 Pm
61
100
160.9462298(97)
724+20 −12 ms[ 3]
β− (98.91%)
161 Sm
(5/2−)
β− , n (1.09%)[ 3]
160 Sm
161m Pm
965.9(9) keV
890(90) ns
IT
161 Pm
(13/2+)
162 Pm
61
101
161.95057(32)#
467+38 −18 ms[ 3]
β− (98.21%)
162 Sm
2+#
β− , n (1.79%)[ 3]
161 Sm
163 Pm
61
102
162.95388(43)#
362+42 −30 ms[ 3]
β− (95%)
163 Sm
5/2−#
β− , n (5.00%)[ 3]
162 Sm
164 Pm
61
103
163.95882(43)#
280+38 −33 ms[ 3]
β− (93.82%)
164 Sm
5−#
β− , n (6.18%)[ 3]
163 Sm
165 Pm
61
104
164.96278(54)#
297+111 −101 ms[ 3]
β− (86.74%)
165 Sm
5/2−#
β− , n (13.26%)[ 3]
164 Sm
166 Pm
61
105
228+131 −112 ms[ 3]
β−
166 Sm
β− , n (<52%)[ 3]
165 Sm
This table header & footer:
^ m Pm – Excited nuclear isomer .
^ ( ) – Uncertainty (1σ ) is given in concise form in parentheses after the corresponding last digits.
^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
^
Modes of decay:
^ Bold italics symbol as daughter – Daughter product is nearly stable.
^ Bold symbol as daughter – Daughter product is stable.
^ ( ) spin value – Indicates spin with weak assignment arguments.
^ a b c d Order of ground state and isomer is uncertain.
^ a b c Fission product
^ Spontaneous fission product of 232 Th , 235 U , 238 U and alpha decay daughter of primordial 151 Eu
Stability of promethium isotopes
Promethium is one of the two elements of the first 82 elements that has no stable isotopes. This is a rarely occurring effect of the liquid drop model . Namely, promethium does not have any beta-stable isotopes , as for any mass number , it is energetically favorable for a promethium isotope to undergo positron emission or beta decay , respectively forming a neodymium or samarium isotope which has a higher binding energy per nucleon . The other element for which this happens is technetium (Z = 43).
Promethium-147
Promethium-147 has a half-life of 2.62 years, and is a fission product produced in nuclear reactors via beta decay from neodymium -147. The isotopes 142 Nd, 143 Nd, 144 Nd, 145 Nd, 146 Nd, 148 Nd, and 150 Nd are all stable with respect to beta decay , so the isotopes of promethium with those masses cannot be produced by beta decay and therefore are not fission products in significant quantities (they could only be produced directly, rather than along a beta-decay chain). 149 Pm and 151 Pm have half-lives of only 53.08 and 28.40 hours, so are not found in spent nuclear fuel that has been cooled for months or years. It is found naturally mostly from the spontaneous fission of uranium-238 and less often from the alpha decay of europium-151.[ 4]
Promethium-147 is used as a beta particle source and a radioisotope thermoelectric generator (RTG) fuel; its power density is about 2 watts per gram. Mixed with a phosphor, it was used to illuminate Apollo Lunar Module electrical switch tips and painted on control panels of the Lunar Roving Vehicle .[ 5]
References
^ a b c d Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF) . Chinese Physics C . 45 (3): 030001. doi :10.1088/1674-1137/abddae .
^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C . 45 (3): 030003. doi :10.1088/1674-1137/abddaf .
^ a b c d e f g h i j k l m n o p Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region" . The Astrophysical Journal . 936 (107): 107. Bibcode :2022ApJ...936..107K . doi :10.3847/1538-4357/ac80fc . hdl :2117/375253 .
^ Belli, P.; Bernabei, R.; Cappella, F.; et al. (2007). "Search for α decay of natural Europium". Nuclear Physics A . 789 (1– 4): 15– 29. Bibcode :2007NuPhA.789...15B . doi :10.1016/j.nuclphysa.2007.03.001 .
^ "Apollo Experience Report - Protection Against Radiation" (PDF) . NASA. Archived from the original (PDF) on 14 November 2014. Retrieved 9 December 2011 .
Isotope masses from:
Half-life, spin, and isomer data selected from the following sources.
Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties" , Nuclear Physics A , 729 : 3– 128, Bibcode :2003NuPhA.729....3A , doi :10.1016/j.nuclphysa.2003.11.001
National Nuclear Data Center . "NuDat 2.x database" . Brookhaven National Laboratory .
Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida : CRC Press . ISBN 978-0-8493-0485-9 .
Group
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Period
Hydrogen and alkali metals
Alkaline earth metals
Pnictogens
Chalcogens
Halogens
Noble gases
①
1
2
②
3
4
5
6
7
8
9
10
③
11
12
13
14
15
16
17
18
④
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
⑤
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
⑥
55
56
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
⑦
87
88
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
⑧
119
120
57
58
59
60
61
62
63
64
65
66
67
68
69
70
89
90
91
92
93
94
95
96
97
98
99
100
101
102