Isotopes of europium
Naturally occurring europium (63 Eu) is composed of two isotopes , 151 Eu and 153 Eu, with 153 Eu being the most abundant (52.2% natural abundance ). While 153 Eu is observationally stable (theoretically can undergo alpha decay with half-life over 5.5×1017 years), 151 Eu was found in 2007 to be unstable and undergo alpha decay .[ 4] The half-life is measured to be (4.62 ± 0.95(stat.) ± 0.68(syst.)) × 1018 years[ 5] which corresponds to 1 alpha decay per two minutes in every kilogram of natural europium. Besides the natural radioisotope 151 Eu, 36 artificial radioisotopes have been characterized, with the most stable being 150 Eu with a half-life of 36.9 years, 152 Eu with a half-life of 13.516 years, 154 Eu with a half-life of 8.593 years, and 155 Eu with a half-life of 4.7612 years. The majority of the remaining radioactive isotopes, which range from 130 Eu to 170 Eu, have half-lives that are less than 12.2 seconds. This element also has 18 metastable isomers , with the most stable being 150m Eu (t1/2 12.8 hours), 152m1 Eu (t1/2 9.3116 hours) and 152m5 Eu (t1/2 96 minutes).
The primary decay mode before the most abundant stable isotope, 153 Eu, is electron capture , and the primary mode after is beta decay . The primary decay products before 153 Eu are isotopes of samarium and the primary products after are isotopes of gadolinium .
List of isotopes
Nuclide[ n 1]
Z
N
Isotopic mass (Da ) [ n 2] [ n 3]
Half-life [ n 4] [ n 5]
Decay mode [ n 6]
Daughter isotope [ n 7] [ n 8]
Spin andparity [ n 9] [ n 5]
Natural abundance (mole fraction)
Excitation energy[ n 5]
Normal proportion
Range of variation
130 Eu
63
67
129.96357(54)#
1.1(5) ms [0.9(+5−3) ms]
2+#
131 Eu
63
68
130.95775(43)#
17.8(19) ms
3/2+
132 Eu
63
69
131.95437(43)#
100# ms
β+
132 Sm
p
131 Sm
133 Eu
63
70
132.94924(32)#
200# ms
β+
133 Sm
11/2−#
134 Eu
63
71
133.94651(21)#
0.5(2) s
β+
134 Sm
β+ , p (rare)
133 Pm
135 Eu
63
72
134.94182(32)#
1.5(2) s
β+
135 Sm
11/2−#
β+ , p
134 Pm
136 Eu
63
73
135.93960(21)#
3.3(3) s
β+ (99.91%)
136 Sm
(7+)
β+ , p (.09%)
135 Pm
136m Eu
0(500)# keV
3.8(3) s
β+ (99.91%)
136 Sm
(3+)
β+ , p (.09%)
135 Pm
137 Eu
63
74
136.93557(21)#
8.4(5) s
β+
137 Sm
11/2−#
138 Eu
63
75
137.93371(3)
12.1(6) s
β+
138 Sm
(6−)
139 Eu
63
76
138.929792(14)
17.9(6) s
β+
139 Sm
(11/2)−
140 Eu
63
77
139.92809(6)
1.51(2) s
β+ (95.1(7)%)
140 Sm
1+
EC (4.9(7)%)
140m Eu
210(15) keV
125(2) ms
IT (99%)
140 Eu
5−#
β+ (1%)
140 Sm
141 Eu
63
78
140.924931(14)
40.7(7) s
β+
141 Sm
5/2+
141m Eu
96.45(7) keV
2.7(3) s
IT (86%)
141 Eu
11/2−
β+ (14%)
141 Sm
142 Eu
63
79
141.92343(3)
2.36(10) s
β+ (89.9(16)%)
142 Sm
1+
EC (11.1(16)%)
142m Eu
460(30) keV
1.223(8) min
β+
142 Sm
8−
143 Eu
63
80
142.920298(12)
2.59(2) min
β+
143 Sm
5/2+
143m Eu
389.51(4) keV
50.0(5) μs
11/2−
144 Eu
63
81
143.918817(12)
10.2(1) s
β+
144 Sm
1+
144m Eu
1127.6(6) keV
1.0(1) μs
(8−)
145 Eu
63
82
144.916265(4)
5.93(4) d
β+
145 Sm
5/2+
145m Eu
716.0(3) keV
490 ns
11/2−
146 Eu
63
83
145.917206(7)
4.61(3) d
β+
146 Sm
4−
146m Eu
666.37(16) keV
235(3) μs
9+
147 Eu
63
84
146.916746(3)
24.1(6) d
β+ (99.99%)
147 Sm
5/2+
α (.0022%)
143 Pm
148 Eu
63
85
147.918086(11)
54.5(5) d
β+ (100%)
148 Sm
5−
α (9.39×10−7 %)
144 Pm
149 Eu
63
86
148.917931(5)
93.1(4) d
EC
149 Sm
5/2+
150 Eu
63
87
149.919702(7)
36.9(9) y
β+
150 Sm
5(−)
150m Eu
42.1(5) keV
12.8(1) h
β− (89%)
150 Gd
0−
β+ (11%)
150 Sm
IT (≤5×10−8 %)[ 6]
150 Eu
151 Eu[ n 10]
63
88
150.9198502(26)
4.62×1018 y
α
147 Pm
5/2+
0.4781(6)
151m Eu
196.245(10) keV
58.9(5) μs
IT[ 7]
151 Eu
11/2−
152 Eu
63
89
151.9217445(26)
13.537(6) y
EC (72.09%)
152 Sm
3−
β− (27.9%)
152 Gd
β+ (0.027%)
152 Sm
152m1 Eu
45.5998(4) keV
9.3116(13) h
β− (72%)
152 Gd
0−
β+ (28%)
152 Sm
152m2 Eu
65.2969(4) keV
0.94(8) μs
1−
152m3 Eu
78.2331(4) keV
165(10) ns
1+
152m4 Eu
89.8496(4) keV
384(10) ns
4+
152m5 Eu
147.86(10) keV
96(1) min
8−
153 Eu[ n 11]
63
90
152.9212303(26)
Observationally Stable [ n 12] [ 8] [ 9]
5/2+
0.5219(6)
154 Eu[ n 11]
63
91
153.9229792(26)
8.593(4) y
β− (99.98%)
154 Gd
3−
EC (.02%)
154 Sm
154m1 Eu
68.1702(4) keV
2.2(1) μs
IT
154 Eu
2+
154m2 Eu
145.3(3) keV
46.3(4) min
IT
154 Eu
(8−)
155 Eu[ n 11]
63
92
154.9228933(27)
4.7611(13) y
β−
155 Gd
5/2+
156 Eu[ n 11]
63
93
155.924752(6)
15.19(8) d
β−
156 Gd
0+
157 Eu
63
94
156.925424(6)
15.18(3) h
β−
157 Gd
5/2+
158 Eu
63
95
157.92785(8)
45.9(2) min
β−
158 Gd
(1−)
159 Eu
63
96
158.929089(8)
18.1(1) min
β−
159 Gd
5/2+
160 Eu
63
97
159.93197(22)#
38(4) s
β−
160 Gd
1(−)
161 Eu
63
98
160.93368(32)#
26(3) s
β−
161 Gd
5/2+#
162 Eu
63
99
161.93704(32)#
10.6(10) s
β−
162 Gd
163 Eu
63
100
162.93921(54)#
7.7(4) s
β−
163 Gd
5/2+#
163m Eu
964.5(10) keV
911(24) ns
(13/2−)
164 Eu
63
101
163.94299(64)#
4.16(19) s
β−
164 Gd
165 Eu
63
102
164.94572(75)#
2.163+0.139 −0.120 s[ 10]
β−
165 Gd
5/2+#
166 Eu
63
103
165.94997(86)#
1.277+0.100 −0.145 s[ 10]
β− (99.37%)
166 Gd
β− , n (0.63%)
165 Gd
167 Eu
63
104
166.95321(86)#
852+76 −54 ms[ 10]
β− (98.05%)
167 Gd
5/2+#
β− , n (1.95%)
166 Gd
168 Eu
63
105
440+48 −47 ms[ 10]
β− (96.05%)
168 Gd
β− , n (3.95%)
167 Gd
169 Eu
63
106
389+92 −88 ms[ 10]
β− (85.38%)
169 Gd
β− , n (14.62%)
168 Gd
170 Eu
63
107
197+74 −71 ms[ 10]
β−
170 Gd
β− , n
169 Gd
This table header & footer:
^ m Eu – Excited nuclear isomer .
^ ( ) – Uncertainty (1σ ) is given in concise form in parentheses after the corresponding last digits.
^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
^ Bold half-life – nearly stable, half-life longer than age of universe .
^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
^
Modes of decay:
^ Bold italics symbol as daughter – Daughter product is nearly stable.
^ Bold symbol as daughter – Daughter product is stable.
^ ( ) spin value – Indicates spin with weak assignment arguments.
^ primordial radionuclide
^ a b c d Fission product
^ Believed to undergo α decay to 149 Pm with a half-life over 5.5× 1017 years
Europium-155
Europium-155 is a fission product with a half-life of 4.76 years. It has a maximum decay energy of 252 keV . In a thermal reactor (almost all current nuclear power plants ), it has a low fission product yield , about half of one percent as much as the most abundant fission products.
155 Eu's large neutron capture cross section (about 3900 barns for thermal neutrons , 16000 resonance integral ) means that most of even the small amount produced is destroyed in the course of the nuclear fuel 's burnup . Yield, decay energy, and half-life are all far less than that of 137 Cs and 90 Sr , so 155 Eu is not a significant contributor to nuclear waste .
Some 155 Eu is also produced by successive neutron capture on 153 Eu (nonradioactive, 350 barns thermal, 1500 resonance integral, yield is about 5 times as great as 155 Eu) and 154 Eu (half-life 8.6 years, 1400 barns thermal, 1600 resonance integral, fission yield is extremely small because beta decay stops at 154 Sm). However, the differing cross sections mean that both 155 Eu and 154 Eu are destroyed faster than they are produced.
154 Eu is a prolific emitter of gamma radiation .[ 11]
References
^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF) . Chinese Physics C . 45 (3): 030001. doi :10.1088/1674-1137/abddae .
^ "Standard Atomic Weights: Europium" . CIAAW . 1995.
^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)" . Pure and Applied Chemistry . doi :10.1515/pac-2019-0603 . ISSN 1365-3075 .
^ Belli, P.; et al. (2007). "Search for α decay of natural europium". Nuclear Physics A . 789 (1– 4): 15– 29. Bibcode :2007NuPhA.789...15B . doi :10.1016/j.nuclphysa.2007.03.001 .
^
Casali, N.; Nagorny, S. S.; Orio, F.; Pattavina, L.; et al. (2014). "Discovery of the 151 Eu α decay". Journal of Physics G: Nuclear and Particle Physics . 41 (7): 075101. arXiv :1311.2834 . Bibcode :2014JPhG...41g5101C . doi :10.1088/0954-3899/41/7/075101 . S2CID 116920467 .
^ "Adopted Levels for 150 Eu" (PDF) . NNDC Chart of Nuclides.
^ "Adopted Levels for 151 Eu" . NNDC Chart of Nuclides.
^ Danevich, F. A.; Andreotti, E.; Hult, M.; Marissens, G.; Tretyak, V. I.; Yuksel, A. (2012). "Search for α decay of 151 Eu to the first excited level of 147 Pm using underground γ-ray spectrometry". European Physical Journal A . 48 (157): 157. arXiv :1301.3465 . Bibcode :2012EPJA...48..157D . doi :10.1140/epja/i2012-12157-7 . S2CID 118657922 .
^ Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A . 55 (8): 140–1–140–7. arXiv :1908.11458 . Bibcode :2019EPJA...55..140B . doi :10.1140/epja/i2019-12823-2 . ISSN 1434-601X . S2CID 201664098 .
^ a b c d e f Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region" . The Astrophysical Journal . 936 (107): 107. Bibcode :2022ApJ...936..107K . doi :10.3847/1538-4357/ac80fc . hdl :2117/375253 .
^ "Archived copy" (PDF) . Archived from the original (PDF) on 2011-07-06. Retrieved 2011-04-02 .{{cite web }}
: CS1 maint: archived copy as title (link )
Isotope masses from:
Isotopic compositions and standard atomic masses from:
"News & Notices: Standard Atomic Weights Revised" . International Union of Pure and Applied Chemistry . 19 October 2005.
Half-life, spin, and isomer data selected from the following sources.
Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties" , Nuclear Physics A , 729 : 3– 128, Bibcode :2003NuPhA.729....3A , doi :10.1016/j.nuclphysa.2003.11.001
National Nuclear Data Center . "NuDat 2.x database" . Brookhaven National Laboratory .
Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida : CRC Press . ISBN 978-0-8493-0485-9 .
Group
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Period
Hydrogen and alkali metals
Alkaline earth metals
Pnictogens
Chalcogens
Halogens
Noble gases
①
1
2
②
3
4
5
6
7
8
9
10
③
11
12
13
14
15
16
17
18
④
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
⑤
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
⑥
55
56
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
⑦
87
88
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
⑧
119
120
57
58
59
60
61
62
63
64
65
66
67
68
69
70
89
90
91
92
93
94
95
96
97
98
99
100
101
102