Neutron number

This diagram shows the half-life (T½) of various isotopes with Z protons and neutron number N.

The neutron number (symbol N) is the number of neutrons in a nuclide.

Atomic number (proton number) plus neutron number equals mass number: Z + N = A. The difference between the neutron number and the atomic number is known as the neutron excess: D = NZ = A − 2Z.

Neutron number is not written explicitly in nuclide symbol notation, but can be inferred as it is the difference between the two left-hand numbers (atomic number and mass).

Element C: Carbon, no specific isotope
Isotope/Nuclide 14
C
: Carbon-14 specifically.
With atomic number 14
6
C
: Carbon-14. No more specific (carbon always has six protons) but may be more clear.

Nuclides that have the same neutron number but different proton numbers are called isotones. This word was formed by replacing the p in isotope with n for neutron. Nuclides that have the same mass number are called isobars. Nuclides that have the same neutron excess are called isodiaphers.[1]

Chemical properties are primarily determined by proton number, which determines which chemical element the nuclide is a member of; neutron number has only a slight influence.

Neutron number is primarily of interest for nuclear properties. For example, actinides with odd neutron number are usually fissile (fissionable with slow neutrons) while actinides with even neutron number are usually not fissile (but are fissionable with fast neutrons).

Only 58 stable nuclides have an odd neutron number, compared to 194 with an even neutron number. No odd-neutron-number isotope is the most naturally abundant isotope in its element, except for beryllium-9 (which is the only stable beryllium isotope), nitrogen-14, and platinum-195.

No stable nuclides have a neutron number of 19, 21, 35, 39, 45, 61, 89, 115, 123, or ≥ 127. There are 6 stable nuclides and one radioactive primordial nuclide with neutron number 82 (82 is the neutron number with the most stable nuclides, since it is a magic number): barium-138, lanthanum-139, cerium-140, praseodymium-141, neodymium-142, and samarium-144, as well as the radioactive primordial nuclide xenon-136, which decays by a very slow double beta process. Except 20, 50 and 82 (all these three numbers are magic numbers), all other neutron numbers have at most 4 stable nuclides (in the case of 20, there are 5 stable nuclides 36S, 37Cl, 38Ar, 39K, and 40Ca, and in the case for 50, there are 5 stable nuclides: 86Kr, 88Sr, 89Y, 90Zr, and 92Mo, and 1 radioactive primordial nuclide, 87Rb). Most odd neutron numbers have at most one stable nuclide (exceptions are 1 (2H and 3He), 5 (9Be and 10B), 7 (13C and 14N), 55 (97Mo and 99Ru) and 107 (179Hf and 180mTa)). However, some even neutron numbers also have only one stable nuclide; these numbers are 0 (1H), 2 (4He), 4 (7Li), 84 (142Ce), 86 (146Nd) and 126 (208Pb), the case of 84 is special, since 142Ce is theoretically unstable to double beta decay, and the nuclides with 84 neutrons which are theoretically stable to both beta decay and double beta decay are 144Nd and 146Sm, but both nuclides are observed to alpha decay.[2] (In theory, no stable nuclides have neutron number 19, 21, 35, 39, 45, 61, 71, 83–91, 95, 96, and ≥ 99) Besides, no nuclides with neutron number 19, 21, 35, 39, 45, 61, 71, 89, 115, 123, 147, ... are stable to beta decay (see Beta-decay stable isobars).

Only two stable nuclides have fewer neutrons than protons: hydrogen-1 and helium-3. Hydrogen-1 has the smallest neutron number, 0.

References

Read other articles:

Monumento a Alessandro Rossi El monumento a Alessandro Rossi es una escultura[1]​[2]​ de Schio (Vicenza) de 1902 del artista Giulio Monteverde. La estatua fue realizada por iniciativa de un comité de ciudadanos creado para dedicar un monumento al empresario Alessandro Rossi. Eligieron el escultor Giulio Monteverde, que ya había realizado, justamente en Schio y por encargo del mismo Rossi, el famoso monumento “al Tessitore”(al tejedor). Normalmente los habitantes de Schio lla...

Chinese sovereign wealth fund China Investment CorporationHeadquarters at New Beijing Poly PlazaTypeSovereign wealth fundIndustryInvestment serviceFounded2007HeadquartersBeijing, ChinaKey peoplePeng Chun (Chairman and CEO) Ju Weimin (Vice Chairman, President and CIO)Operating income US$ 118.012  billion (2019)[1]Net income US$ 110.313  billion (2019)[1]AUM CNY5.58 trillion (2021) US$0.87 trillion[2]Total assets US$ 1,350  billon (2023)Total equity US$ 94...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Who's Still Crazy – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) 1983 single by Kevin AyersWho’s Still CrazySingle by Kevin Ayersfrom the album Diamond Jack and the Queen of Pain B-sideChampagne and ValiumReleased1...

Periferie kan verwijzen naar: WikiWoordenboek Zoek periferie op in het WikiWoordenboek. Periferie (aardrijkskunde), de randgebieden van een stad, het achterland van een natie of de minder ontwikkelde delen van de wereld Periferie (economie), een model van agglomeratie-economieën (ook wel kern-periferietheorie) Periferie (sociologie), een door Niklas Luhmann ontwikkeld onderdeel van de systeemtheorie Periferie (wiskunde), een door een kromme lijn begrensd vlak Periferisch zicht of perifeer zi...

Частина інформації в цій статті застаріла. Ви можете допомогти, оновивши її. Можливо, сторінка обговорення містить зауваження щодо потрібних змін. Microsoft Edge Тип ВеббраузерРозробник MicrosoftПерший випуск 29 квітня 2015; 8 років тому (2015-04-29)Стабільний випуск PC102.0.1245.33 3&#...

AsrinaldiLahir13 September 1973 (umur 50)Solok, Sumatera BaratKebangsaanIndonesiaAlmamater Universitas Riau Universitas Gadjah Mada Universiti Kebangsaan Malaysia PekerjaanIlmuwan, pengajarDikenal atasPengamat politik dari Universitas Andalas Prof. Dr. Asrinaldi, S.Sos., M.Si (lahir 13 September 1973) adalah seorang pakar politik Indonesia, dosen, dan akademikus Universitas Andalas.[1] Ia menulis seputar dinamika politik daerah dan nasional di berbagai media.[2][3]...

أمبرية    علم شعار   الإحداثيات 42°59′00″N 12°34′00″E / 42.983333333333°N 12.566666666667°E / 42.983333333333; 12.566666666667  [1] تاريخ التأسيس 2 يناير 1927  تقسيم إداري  البلد إيطاليا[2][3]  التقسيم الأعلى إيطاليا  العاصمة بِروجَة  التقسيمات الإدارية مقاطعة بِر�...

New Zealand triathlete and distance runner Kate McIlroyKate McIlroy competing in 2010Personal informationBorn26 August 1981WellingtonHeight173 cm (5 ft 8 in)Weight57 kg (126 lb)SportCountryNew Zealand Kate McIlroy (born 26 August 1981)[1] is a New Zealand cyclist, triathlete and former runner. She won the World Mountain Running title in 2005[2] and was later named New Zealand Sportswoman of the Year at the Halberg Awards.[3] She is the national...

Majelis Legislatif Negara Bagian Sabah bahasa Kadazandusun: Langga' Tinukuan Pogun SabahDewan Undangan Negeri Sabah ke-16JenisJenisSistem satu kamar SejarahDidirikan25 September 1963PimpinanYang di-Pertua NegeriJuhar Mahiruddin sejak 1 Januari 2011 KetuaKadzim M. Yahya sejak 8 Oktober 2020 Wakil Ketua IAhmad Abdul Rahman sejak 7 Juni 2018 Wakil Ketua IIGeorge Anthony Ginibun sejak 26 Juni 2018 Ketua MenteriHajiji Noor, GRS sejak 29 September 2020 Pemimpin OposisiShafie Apdal, WARISAN ...

French footballer (born 1997) Christopher Nkunku Nkunku playing for RB Leipzig in 2021Personal informationFull name Christopher Alan NkunkuDate of birth (1997-11-14) 14 November 1997 (age 26)Place of birth Lagny-sur-Marne, FranceHeight 1.77 m (5 ft 10 in)[1]Position(s) Attacking midfielder, second striker, forwardTeam informationCurrent team ChelseaNumber 18Youth career2003–2009 AS Marolles2009–2010 Fontainebleau2010–2015 Paris Saint-GermainSenior career*Year...

Part of a series on theBaháʼí Faith Central figures Baháʼu'lláh The Báb ʻAbdu'l-Bahá Basics Teachings Unity of God Unity of humanity Unity of religion Laws Prayer Calendar Nineteen Day Feast Key scripture Kitáb-i-Aqdas Kitáb-i-Íqán The Hidden Words Some Answered Questions Other Texts Institutions Covenant of Baháʼu'lláh Administrative Order The Guardianship Universal House of Justice Spiritual Assemblies History Baháʼí history Timeline Bábism Persecution People Shoghi Effe...

Rehabeam (Ibrani: רחבעם, Rehav'am, artinya dia yang memperluas rakyatnya; bahasa Inggris: Rehoboam) adalah seorang raja di Kerajaan Yehuda menurut Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen. Ia menggantikan ayahnya, Salomo. Kakeknya adalah Daud. Rehabeam adalah raja ketiga dari Dinasti Daud, raja keempat dari Kerajaan Israel Bersatu dan raja pertama dari Kerajaan Yehuda setelah pecahnya Kerajaan Israel yang diwarisinya dari raja Salomo. Ibunya bernama Naama, orang Amon...

2021 American filmBlue MiraclePromotional posterDirected byJulio QuintanaWritten by Chris Dowling Julio Quintana Produced by Javier Chapa Darren Moorman Trey Reynolds Ben Howard Chris George Starring Dennis Quaid Jimmy Gonzales Anthony Gonzalez Dana Wheeler-Nicholson Fernanda Urrejola Bruce McGill Miguel Angel Garcia CinematographySantiago Benet MariEdited bySandra AdairMusic byHanan TownshendProductioncompanies Mucho Mas Media Reserve Entertainment Redwood Ranch Productions Third Coast Conte...

Type of rental lodging For the short story, see The Boarding House. For the film, see Boardinghouse (film). One of the last remaining textile mill boarding houses in Lowell, Massachusetts, on right; part of the Lowell National Historical Park A boarding house is a house (frequently a family home) in which lodgers rent one or more rooms on a nightly basis, and sometimes for extended periods of weeks, months, and years. The common parts of the house are maintained, and some services, such as la...

A procedure to split a deck of cards by someone other than the dealer For the cut card in poker, see Poker equipment. A Canasta tray used in cutting and dealing In card games, to cut the cards (also cut the deck or cut the pack) is to split the deck into two packets by lifting one packet from the top and placing it face down beside the remainder; before placing the lower packet on top of it. This is typically done after the cards have already been shuffled, and the procedure is used just prio...

Chinese TV series or program The LegendsAlso known asZhaoyaoChinese招摇 GenreXianxiaRomanceBased onZhaoyao by Jiuliu FeixiangWritten byJiuliu FeixiangYang QianziPeng YunruiDirected byZheng WeiwenStarringBai LuXu KaiDai XuXiao YanCountry of originChinaOriginal languageMandarinNo. of episodes56ProductionExecutive producersYuan JieLiu LuHuang YanhongProduction companyYu Heng Film GroupOriginal releaseNetworkHunan TVReleaseJanuary 28 (2019-01-28) –April 3, 2019 (2019-04-03...

La Vie en RoseSingel oleh Iz*Onedari album Color*IzDirilis29 Oktober 2018FormatUnduhan digitalpenyiaranGenreK-popElectropop[1]Durasi3:39LabelOff the RecordStone Music[2]PenciptaMosPickProduserMosPickKronologi singel Iz*One La Vie en Rose (2018) Suki to Iwasetai (2019) Video musikLa Vie en Rose di YouTube La Vie en Rose (Hangul: 라비앙로즈; RR: Rabiangrojeu) adalah singel debut kary grup vokal perempuan Korea Selatan-Jepang Iz*One, yang dirilis p...

Africa Proconsularis (125 AD) Octaba was an ancient Roman–Berber city in the province of Africa Proconsularis and Byzacena in late antiquity.[1] Its exact location is now lost, but it was in the Sahel region of Tunisia. In 484AD the town's Catholic bishop, Sabinico, attended a synod in Carthage called by the Arian king Huneric, the Vandal.[2] At the conclusion of that synod, Sabinico was sent into exile by the king. Today Octabia survives only as a titular bishopric of t...

Ancient Greek city in Pieria, Central Macedonia, Greece Pydna, the ancient site Pydna is an ancient Greek city in the regional unit of Pieria, Central Macedonia, Greece. It is an important place in the history of Pieria and a major archaeological site located directly at the Aegean Sea, 16 km northeast of Katerini, 28 km north-east of Dion and 2.5 km from the village of Makrygialos. Nearby are two Macedonian tombs, discovered by the French archaeologist Heuzey during his Greek ...

Malaysian politician This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (February 2023) In this Malay name, there is no family name. The name Mahat is a patronymic, and the person should be referred to by the given name, Abu Samah. The Arabic-derived word bin or binti/binte, if used, means 'son of' or 'daughter of', respectively. Abu Samah bin Mahat is a Malaysian politician who served ...