Injective sheaf

In mathematics, injective sheaves of abelian groups are used to construct the resolutions needed to define sheaf cohomology (and other derived functors, such as sheaf Ext).

There is a further group of related concepts applied to sheaves: flabby (flasque in French), fine, soft (mou in French), acyclic. In the history of the subject they were introduced before the 1957 "Tohoku paper" of Alexander Grothendieck, which showed that the abelian category notion of injective object sufficed to found the theory. The other classes of sheaves are historically older notions. The abstract framework for defining cohomology and derived functors does not need them. However, in most concrete situations, resolutions by acyclic sheaves are often easier to construct. Acyclic sheaves therefore serve for computational purposes, for example the Leray spectral sequence.

Injective sheaves

An injective sheaf is a sheaf that is an injective object of the category of abelian sheaves; in other words, homomorphisms from to can always be extended to any sheaf containing

The category of abelian sheaves has enough injective objects: this means that any sheaf is a subsheaf of an injective sheaf. This result of Grothendieck follows from the existence of a generator of the category (it can be written down explicitly, and is related to the subobject classifier). This is enough to show that right derived functors of any left exact functor exist and are unique up to canonical isomorphism.

For technical purposes, injective sheaves are usually superior to the other classes of sheaves mentioned above: they can do almost anything the other classes can do, and their theory is simpler and more general. In fact, injective sheaves are flabby (flasque), soft, and acyclic. However, there are situations where the other classes of sheaves occur naturally, and this is especially true in concrete computational situations.

The dual concept, projective sheaves, is not used much, because in a general category of sheaves there are not enough of them: not every sheaf is the quotient of a projective sheaf, and in particular projective resolutions do not always exist. This is the case, for example, when looking at the category of sheaves on projective space in the Zariski topology. This causes problems when attempting to define left derived functors of a right exact functor (such as Tor). This can sometimes be done by ad hoc means: for example, the left derived functors of Tor can be defined using a flat resolution rather than a projective one, but it takes some work to show that this is independent of the resolution. Not all categories of sheaves run into this problem; for instance, the category of sheaves on an affine scheme contains enough projectives.

Acyclic sheaves

An acyclic sheaf over X is one such that all higher sheaf cohomology groups vanish.

The cohomology groups of any sheaf can be calculated from any acyclic resolution of it (this goes by the name of De Rham-Weil theorem).

Fine sheaves

A fine sheaf over X is one with "partitions of unity"; more precisely for any open cover of the space X we can find a family of homomorphisms from the sheaf to itself with sum 1 such that each homomorphism is 0 outside some element of the open cover.

Fine sheaves are usually only used over paracompact Hausdorff spaces X. Typical examples are the sheaf of germs of continuous real-valued functions over such a space, or smooth functions over a smooth (paracompact Hausdorff) manifold, or modules over these sheaves of rings. Also, fine sheaves over paracompact Hausdorff spaces are soft and acyclic.

One can find a resolution of a sheaf on a smooth manifold by fine sheaves using the Alexander–Spanier resolution.[1]

As an application, consider a real manifold X. There is the following resolution of the constant sheaf by the fine sheaves of (smooth) differential forms:

This is a resolution, i.e. an exact complex of sheaves by the Poincaré lemma. The cohomology of X with values in can thus be computed as the cohomology of the complex of globally defined differential forms:

Soft sheaves

A soft sheaf over X is one such that any section over any closed subset of X can be extended to a global section.

Soft sheaves are acyclic over paracompact Hausdorff spaces.

Flasque or flabby sheaves

A flasque sheaf (also called a flabby sheaf) is a sheaf with the following property: if is the base topological space on which the sheaf is defined and

are open subsets, then the restriction map

is surjective, as a map of groups (rings, modules, etc.).

Flasque sheaves are useful because (by definition) their sections extend. This means that they are some of the simplest sheaves to handle in terms of homological algebra. Any sheaf has a canonical embedding into the flasque sheaf of all possibly discontinuous sections of the étalé space, and by repeating this we can find a canonical flasque resolution for any sheaf. Flasque resolutions, that is, resolutions by means of flasque sheaves, are one approach to defining sheaf cohomology.

Flasque sheaves are soft and acyclic.

Flasque is a French word that has sometimes been translated into English as flabby.

References

  1. ^ Warner, Frank W. (1983). Foundations of Differentiable Manifolds and Lie Groups - Springer. Graduate Texts in Mathematics. Vol. 94. pp. 186, 181, 178, 170. doi:10.1007/978-1-4757-1799-0. ISBN 978-1-4419-2820-7.

Read other articles:

Comic books reprinted in book form Trade paperbackComicsSpeech balloon Comics studies Education Glossary History by country Methods Cartooning Photo comics Media formats Comic book Comic strip Digital comic Gag cartoon Trade paperback Graphic novel Political cartoon Webcomic Webtoon Comics by country and culture American comics Argentine comics Australian comics Bandes dessinées (Belgium / Quebec) Brazilian comics British comics (Welsh-language) Canadian comics Croatian comics Czech comics D...

 

Italian opera singer Mina LeonesiMina Leonesi c. 1914Bornc. 1890Rivoli, ItalyDiedc. 1930 (aged 39–40)Lombardy, ItalyOccupationOpera Singer & Actress Guglielmina 'Mina' Leonesi (c. 1890 – c. 1930) was an Italian opera singer and actress, active in the early 20th century. Mina was born to a middle-class family in Rivoli, Italy c.1890. Though predominantly based in Milan and appearing in productions staged at La Scala, Mina also travelled internationally with her work, inc...

 

كريماستي   تقسيم إداري البلد اليونان  [1] إحداثيات 36°24′38″N 28°07′09″E / 36.4105°N 28.119083333333°E / 36.4105; 28.119083333333   السكان التعداد السكاني 5568 (resident population of Greece) (2021)4256 (resident population of Greece) (2001)3562 (resident population of Greece) (1991)5363 (resident population of Greece) (2011)  معلومات أخرى 85104  22410...

Cet article est une ébauche concernant une commune du Puy-de-Dôme. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Le bandeau {{ébauche}} peut être enlevé et l’article évalué comme étant au stade « Bon début » quand il comporte assez de renseignements encyclopédiques concernant la commune. Si vous avez un doute, l’atelier de lecture du projet Communes de France est à votre disposition pour vous aider. Consultez également la page d’aid...

 

Untuk kegunaan lain, lihat Republik Arab Bersatu (disambiguasi). Republik Arab Bersatuالجمهورية العربية المتحدةal-Ǧumhūriyyah al-ʿArabiyyah al-Muttaḥidah1958–1961 Bendera Lambang Lagu kebangsaan: Wallahi Zaman Ya Silahi[1]والله زمان يا سلاحي Ibu kotaKairoBahasa yang umum digunakanArabPemerintahanNegara kesatuan sosialisPresiden • 1958–1961 Gamal Abdel Nasser Perdana Menteri • 1958–1961 Gamal Abdel Nass...

 

Premier League Malti 1977-1978 Competizione Premier League Malti Sport Calcio Edizione 63ª Organizzatore MFA Luogo  Malta Partecipanti 10 Formula 1 girone all'italiana Risultati Vincitore  Valletta(10º titolo) Statistiche Incontri disputati 180 Gol segnati 248 (1,38 per incontro) Cronologia della competizione 1976-77 1978-79 Manuale L'edizione 1977-1978 della Premier League maltese è stata la sessantatreesima edizione della massima serie del campionato maltese di calcio. Il...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

Навчально-науковий інститут інноваційних освітніх технологій Західноукраїнського національного університету Герб навчально-наукового інституту інноваційних освітніх технологій ЗУНУ Скорочена назва ННІІОТ ЗУНУ Основні дані Засновано 2013 Заклад Західноукраїнський �...

 

جوليت   الإحداثيات 45°29′04″N 108°58′17″W / 45.484444444444°N 108.97138888889°W / 45.484444444444; -108.97138888889   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة كربون  خصائص جغرافية  المساحة 0.710853 كيلومتر مربع0.773988 كيلومتر مربع (1 أبريل 2010)  ارتفاع 1139 م�...

American baseball player (born 1946) Baseball player Ken ForschForsch in 1976PitcherBorn: (1946-09-08) September 8, 1946 (age 77)Sacramento, California, U.S.Batted: RightThrew: RightMLB debutSeptember 7, 1970, for the Houston AstrosLast MLB appearanceMay 23, 1986, for the California AngelsMLB statisticsWin–loss record114–113Earned run average3.37Strikeouts1,047 Teams Houston Astros (1970–1980) California Angels (1981–1984, 1986) Career highlights and...

 

Zambian footballer Hazel Nali Nali playing for Turkish club Fatih Karagümrük SK in May 2022Personal informationFull name Hazel Natasha NaliDate of birth (1998-04-04) 4 April 1998 (age 26)Place of birth ZambiaPosition(s) GoalkeeperTeam informationCurrent team Fatih Vatan SporNumber 66Senior career*Years Team Apps (Gls) Chibolya Queens 2014 Nchanga Queens 2016 Indeni Roses 2018 2020 Green Buffaloes 2020– Hapoel Be'er Sheva 2022– Fatih Vatan Spor 23 (0)International career‡2014 Zamb...

 

Non-profit organization in the USA Farm SanctuaryFormation1986; 38 years ago (1986)FoundersGene Baur and Lorri HoustonTax ID no. 51-0292919Legal status501(c)(3)PurposeAnimal protectionLocationWatkins Glen, New York[1]Acton, California[2]Websitewww.farmsanctuary.org Farm Sanctuary is an American animal protection organization, founded in 1986 as an advocate for farmed animals. It was America's first shelter for farmed animals.[3] It promotes laws and p...

ISO standard This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: ISO 4165 – news · newspapers · books · scholar · JSTOR (September 2012) (Learn how and when to remove this message) Comparison of (L to R) two Powerlet plugs, one combination plug, and one Cigar Lighter Plug ISO 4165 is a standard adopted by the In...

 

Cruiser class of the Imperial Japanese Navy Agano in October 1942, off of Sasebo, Nagasaki Class overview NameAgano class Builders Sasebo Naval Arsenal Yokosuka Naval Arsenal Operators Imperial Japanese Navy Preceded bySendai class Succeeded byŌyodo class Completed4 Lost4 General characteristics TypeLight cruiser Displacement6,652 t (6,547 long tons) (standard); 7,590 t (7,470 long tons) (loaded) Length174 m (571 ft) Beam15.2 m (50 ft) Draught5.6 ...

 

Village in Estonia Village in Saare County, EstoniaRauguVillageCountry EstoniaCountySaare CountyParishSaaremaa ParishTime zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST) Raugu is a village in Saaremaa Parish, Saare County in western Estonia.[1] Before the administrative reform in 2017, the village was in Orissaare Parish.[2] References ^ Lisa. Asustusüksuste nimistu (PDF). haldusreform.fin.ee (in Estonian). Rahandusministeerium. Retrieved 3 December 2017. ^ Saarem...

Adriana Salvatierra Presiden SenatMasa jabatan18 Januari 2019 – 10 November 2019PendahuluMilton BarónPenggantiJeanine Áñez[a]Senator untuk Santa CruzMasa jabatan26 Mei 2015 – 3 November 2020SubstituteJuan José RicPendahuluCarlos RomeroPenggantiCenta RekSenator Pengganti untuk Santa CruzMasa jabatan23 January 2015 – 26 May 2015SenatorCarlos RomeroPendahuluFátima Doly VelardePenggantiJuan José Ric Informasi pribadiLahirAdriana Salvatierra Arriaza03...

 

В Википедии есть статьи о других людях с такой фамилией, см. Левинзон.Эта статья или раздел нуждается в переработке.Пожалуйста, улучшите статью в соответствии с правилами написания статей. Исаак Бер Левинзонидиш יצחק בער לעווינזאהן‎ Дата рождения 2 (13) октября 1788(1788-1...

 

German painter Walter LeistikowWalter Leistikow, portrait by Lovis Corinth, 1893BornWalter Rudolf Leistikow(1865-10-25)25 October 1865Bromberg, Province of Posen, Kingdom of Prussia (now Bydgoszcz, Poland)Died24 July 1908(1908-07-24) (aged 42)Berlin, German EmpireNationalityGermanEducationHermann Eschke, Hans Fredrik GudeMovementBerlin Secession Walter Rudolf Leistikow (1865–1908) was a German landscape painter, graphic artist, designer and art critic. Biography His father was a pharma...

Angevin Invasion of SicilyPart of War of the Sicilian VespersDate1298–31 August 1302LocationSicily, Western MediterraneanResult Sicilian Victory Peace of CaltabellottaBelligerents  Kingdom of Sicily  Kingdom of Naples Crown of Aragon  Papal States Commanders and leaders Frederick III of Sicily Constance of Sicily Sicilian Parliament Corrado Doria Blasco I d'Alagona Roger de Flor Charles II of Naples Robert II of Artois Robert of Naples Philip of Taranto James II of Arago...

 

For the educational object-oriented programming system from Carnegie Mellon University, see Alice (software). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Alice programming language – news · newspapers · books · scholar · JSTOR (February 2011) (Learn how and when to remove this message) AliceParadigm...