Farrell–Jones conjecture

In mathematics, the Farrell–Jones conjecture,[1] named after F. Thomas Farrell and Lowell E. Jones, states that certain assembly maps are isomorphisms. These maps are given as certain homomorphisms.

The motivation is the interest in the target of the assembly maps; this may be, for instance, the algebraic K-theory of a group ring

or the L-theory of a group ring

,

where G is some group.

The sources of the assembly maps are equivariant homology theory evaluated on the classifying space of G with respect to the family of virtually cyclic subgroups of G. So assuming the Farrell–Jones conjecture is true, it is possible to restrict computations to virtually cyclic subgroups to get information on complicated objects such as or .

The Baum–Connes conjecture formulates a similar statement, for the topological K-theory of reduced group -algebras .

Formulation

One can find for any ring equivariant homology theories satisfying

respectively

Here denotes the group ring.

The K-theoretic Farrell–Jones conjecture for a group G states that the map induces an isomorphism on homology

Here denotes the classifying space of the group G with respect to the family of virtually cyclic subgroups, i.e. a G-CW-complex whose isotropy groups are virtually cyclic and for any virtually cyclic subgroup of G the fixed point set is contractible.

The L-theoretic Farrell–Jones conjecture is analogous.

Computational aspects

The computation of the algebraic K-groups and the L-groups of a group ring is motivated by obstructions living in those groups (see for example Wall's finiteness obstruction, surgery obstruction, Whitehead torsion). So suppose a group satisfies the Farrell–Jones conjecture for algebraic K-theory. Suppose furthermore we have already found a model for the classifying space for virtually cyclic subgroups:

Choose -pushouts and apply the Mayer-Vietoris sequence to them:

This sequence simplifies to:

This means that if any group satisfies a certain isomorphism conjecture one can compute its algebraic K-theory (L-theory) only by knowing the algebraic K-Theory (L-Theory) of virtually cyclic groups and by knowing a suitable model for .

Why the family of virtually cyclic subgroups ?

One might also try to take for example the family of finite subgroups into account. This family is much easier to handle. Consider the infinite cyclic group . A model for is given by the real line , on which acts freely by translations. Using the properties of equivariant K-theory we get

The Bass-Heller-Swan decomposition gives

Indeed one checks that the assembly map is given by the canonical inclusion.

So it is an isomorphism if and only if , which is the case if is a regular ring. So in this case one can really use the family of finite subgroups. On the other hand this shows that the isomorphism conjecture for algebraic K-Theory and the family of finite subgroups is not true. One has to extend the conjecture to a larger family of subgroups which contains all the counterexamples. Currently no counterexamples for the Farrell–Jones conjecture are known. If there is a counterexample, one has to enlarge the family of subgroups to a larger family which contains that counterexample.

Inheritances of isomorphism conjectures

The class of groups which satisfies the fibered Farrell–Jones conjecture contain the following groups

  • virtually cyclic groups (definition)
  • hyperbolic groups (see [2])
  • CAT(0)-groups (see [3])
  • solvable groups (see [4])
  • mapping class groups (see [5])

Furthermore the class has the following inheritance properties:

  • Closed under finite products of groups.
  • Closed under taking subgroups.

Meta-conjecture and fibered isomorphism conjectures

Fix an equivariant homology theory . One could say, that a group G satisfies the isomorphism conjecture for a family of subgroups, if and only if the map induced by the projection induces an isomorphism on homology:

The group G satisfies the fibered isomorphism conjecture for the family of subgroups F if and only if for any group homomorphism the group H satisfies the isomorphism conjecture for the family

.

One gets immediately that in this situation also satisfies the fibered isomorphism conjecture for the family .

Transitivity principle

The transitivity principle is a tool to change the family of subgroups to consider. Given two families of subgroups of . Suppose every group satisfies the (fibered) isomorphism conjecture with respect to the family . Then the group satisfies the fibered isomorphism conjecture with respect to the family if and only if it satisfies the (fibered) isomorphism conjecture with respect to the family .

Isomorphism conjectures and group homomorphisms

Given any group homomorphism and suppose that G"' satisfies the fibered isomorphism conjecture for a family F of subgroups. Then also H"' satisfies the fibered isomorphism conjecture for the family . For example if has finite kernel the family agrees with the family of virtually cyclic subgroups of H.

For suitable one can use the transitivity principle to reduce the family again.

Connections to other conjectures

Novikov conjecture

There are also connections from the Farrell–Jones conjecture to the Novikov conjecture. It is known that if one of the following maps

is rationally injective, then the Novikov-conjecture holds for . See for example,.[6][7]

Bost conjecture

The Bost conjecture (named for Jean-Benoît Bost) states that the assembly map

is an isomorphism. The ring homomorphism induces maps in K-theory . Composing the upper assembly map with this homomorphism one gets exactly the assembly map occurring in the Baum–Connes conjecture.

Kaplansky conjecture

The Kaplansky conjecture predicts that for an integral domain and a torsion-free group the only idempotents in are . Each such idempotent gives a projective module by taking the image of the right multiplication with . Hence there seems to be a connection between the Kaplansky conjecture and the vanishing of . There are theorems relating the Kaplansky conjecture to the Farrell Williams–Jones conjecture (compare [8]).

References

  1. ^ Farrell, F. Thomas, Jones, Lowell E., Isomorphism conjectures in algebraic K-theory, Journal of the American Mathematical Society, v. 6, pp. 249–297, 1993
  2. ^ Bartels, Arthur; Lück, Wolfgang; Reich, Holger (2006), "The K-theoretic Farrell-Jones Conjecture for hyperbolic groups", arXiv:math/0609685
  3. ^ Bartels, Arthur; Lück, Wolfgang; Reich, Holger (2009), The Borel Conjecture for hyperbolic and CAT(0)-groups, arXiv:0901.0442
  4. ^ Wegner, Christian (2013), "The Farrell–Jones conjecture for virtually solvable groups", Journal of Topology, 8 (4): 975–1016, arXiv:1308.2432, Bibcode:2013arXiv1308.2432W, doi:10.1112/jtopol/jtv026, S2CID 119153966
  5. ^ Bartels, Arthur; Bestvina, Mladen (2016), "The Farrell-Jones Conjecture for mapping class groups", arXiv:1606.02844 [math.GT]
  6. ^ Ranicki, Andrew A. "On the Novikov conjecture". Novikov conjectures, index theorems and rigidity, Vol. 1, (Oberwolfach 2003). Cambridge, UK: Cambridge University Press. pp. 272–337.
  7. ^ Lück, Wolfgang; Reich, Holger (2005). "The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory". Handbook of K-theory. Vol. 1,2. Berlin: Springer. pp. 703–842.
  8. ^ Bartels, Arthur; Lück, Wolfgang; Reich, Holger (2008), "On the Farrell-Jones Conjecture and its applications", Journal of Topology, 1 (1): 57–86, arXiv:math/0703548, doi:10.1112/jtopol/jtm008, S2CID 17731576

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Koteka – berita · surat kabar · buku · cendekiawan · JSTOR Koteka Koteka adalah pakaian untuk menutup kemaluan laki-laki dalam budaya sebagian penduduk asli Pulau Papua. Koteka terbuat dari Moncong burun...

大分市立大在中学校 北緯33度14分03秒 東経131度43分18秒 / 北緯33.234272度 東経131.721641度 / 33.234272; 131.721641座標: 北緯33度14分03秒 東経131度43分18秒 / 北緯33.234272度 東経131.721641度 / 33.234272; 131.721641過去の名称 大在村立大在中学校国公私立の別 公立学校設置者 大分市共学・別学 男女共学学期 3学期制学校コード C144210000140 所在地 〒870-0268 大分

أقاليم غينيا الطبيعية ( البحرية والوسطى والعليا والحرجية ) غينيا تنقسم إلى أربعة أقاليم طبيعية بخواص مختلفة تتعلق بالأنسان والجغرافيا والمناخ.[1] غينيا البحرية ( La Guinée Maritime ) وتغطى 18% من إجمالي مساحة الدولة . غينيا الوسطى ( La Moyenne-Guinée ) وتغطي 20% من إجمالي مساحة الدولة. غينيا...

Wappen Deutschlandkarte 52.20305555555610.7075160Koordinaten: 52° 12′ N, 10° 42′ O Basisdaten Bundesland: Niedersachsen Landkreis: Wolfenbüttel Samtgemeinde: Sickte Höhe: 160 m ü. NHN Fläche: 13,39 km2 Einwohner: 859 (31. Dez. 2022)[1] Bevölkerungsdichte: 64 Einwohner je km2 Postleitzahl: 38173 Vorwahl: 05305 Kfz-Kennzeichen: WF Gemeindeschlüssel: 03 1 58 012 Adresse der Verbandsverwaltung: Am Kamp 123817...

狗肉《辐射》系列角色《辐射4》(2015年)中的狗肉创作者蒂姆·坎设计傑斯·海因格(英语:Jess Heinig)角色设定信息物種狗 狗肉(英语:Dogmeat)是末日幻想类系列角色扮演游戏(RPG)《辐射》中反复出现的非玩家角色(NPC)。它在1997年发行的首版《辐射》游戏(下文称这一版本为《辐射1》)中作为可选队友首次出现,并在续作《辐射2》(1998年)和其它一些游戏中作为客...

У этого термина существуют и другие значения, см. Мишино. ПосёлокЦентрального отделения совхоза «Мишино» 54°10′14″ с. ш. 39°17′33″ в. д.HGЯO Страна  Россия Субъект Федерации Рязанская область Муниципальный район Михайловский Сельское поселение Слободское Истори...

Christian denomination in New Zealand Reformed Churches of New ZealandAbbreviationRCNZClassificationProtestantTheologyConfessional CalvinistPolityPresbyterianAssociationsInternational Conference of Reformed ChurchesOrigin1953Congregations22Members3,530Ministers19Official websitercnz.org.nz Reformed Churches of New Zealand is a Calvinist denomination in New Zealand. The denomination is constituted of 22 member churches, the first seven of which were formed in 1953. Total membership as of 2023 ...

Cloud computing and development platform by Google This article is about Google's cloud computing and development platform. For Google's other cloud computing offerings, see Google Cloud. For other uses, see Firebase (disambiguation). This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-p...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2022) تفجيرات بلد وين أكتوبر 2022 المعلومات البلد الصومال  الموقع بلد وين،  الصومال التاريخ 3 أكتوبر 2022 نوع الهجوم قتل جماعي إنفجار الخسائر الوفيات 20+ المنفذ ح�...

Hindi film directed by A. Muthu PyaasaDirected byA. MuthuWritten bySanjeev DuggalProduced byRamesh SharmaStarringYukta MookheyAftab ShivdasaniZulfi SyedGovind NamdeoSaadhikaCinematographyHarmeet SinghMusic bySanjeev DarshanNikhil-VinayRelease date 11 October 2002 (2002-10-11) Running time145 minutesCountryIndiaLanguageHindi Pyaasa (transl. eternally thirsty) is a 2002 Indian Hindi-language film directed by A. Muthu. The film tells the story of Suraj (Aftab Shivdasani), a ...

Lutheran Christian center in Washington, US This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) Holden Villageclass=notpageimage| Locat...

Lateral dorsal cutaneous nerveDiagram of the segmental distribution of the cutaneous nerves of the sole of the foot.Cutaneous nerves of the right lower extremity. Front and posterior views.DetailsFromsural nerveIdentifiersLatinnervus cutaneus dorsalis lateralisTA98A14.2.07.063TA26587FMA44694Anatomical terms of neuroanatomy[edit on Wikidata] The lateral dorsal cutaneous nerve is a cutaneous branch of the foot. This nerve is the terminal nerve portion of the sural nerve. The common conventi...

2008 studio album by The BlizzardsDomino EffectStudio album by The BlizzardsReleased12 September 2008RecordedSun Studios, Dublin & Grouse Lodge, County WestmeathGenreSka-Pop, Post-Punk RevivalLength37:33LabelUniversal IrelandProducerMichael BeinhornThe Blizzards chronology A Public Display of Affection(2006) Domino Effect(2008) Singles from Domino Effect Trust Me, I'm A DoctorReleased: 22 August 2008 The ReasonReleased: 28 November 2008 PostcardsReleased: 27 February 2009 Professi...

Flag carrier of Suriname Surinam Airways Surinaamse Luchtvaart Maatschappij IATA ICAO Callsign PY SLM SURINAM Founded1953 (1953)Commenced operations1955 (1955)HubsJohan Adolf Pengel International AirportFrequent-flyer programLoyal WingsFleet size2Destinations10Parent companyGovernment of SurinameHeadquartersParamaribo, SurinameEmployees500Websitewww.flyslm.com Surinam Airways (Dutch: Surinaamse Luchtvaart Maatschappij), also known by its initials SLM, is the flag carrier of Suriname...

Spiritual beliefs of the Cherokee people ᏗᎵᏍᏙᏗ dilsdohdi [1] the water spider is said to have first brought fire to the inhabitants of the earth in the basket on her back.[2] Cherokee spiritual beliefs are held in common among the Cherokee people – Native American peoples who are Indigenous to the Southeastern Woodlands, and today live primarily in communities in North Carolina (the Eastern Band of Cherokee Indians), and Oklahoma (the Cherokee Nation and United Kee...

Questa voce sugli argomenti stadi di calcio del Brasile e Alagoas è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Stadio Rei PeléTrapichão Informazioni generaliStato Brasile UbicazioneMaceió, Brasile Inizio lavori25 ottobre 1970 Inaugurazione1968 ProprietarioAlagoas Intitolato aPelé Informazioni tecnichePosti a sedere18 801 Uso e beneficiariCalcio CSA CRB Mappa di localizzazione Modifica dati su Wikidata · ManualeCoordinat...

Gymnasticsat the Games of the X OlympiadVenueOlympic StadiumDates8–12 August 1932← 19281936 → Gymnastics At the 1932 Summer Olympics in Los Angeles, eleven events in gymnastics were contested. The competitions were held from Monday, August 8, 1932 to Friday, August 12, 1932.[1] Medal summary Games Gold Silver Bronze All-Around, Individualdetails Romeo Neri Italy István Pelle Hungary Heikki Savolainen Finland All-Around, Teamdetails  Italy&#...

The Holy Bible (album) has been listed as one of the Music good articles under the good article criteria. If you can improve it further, please do so. If it no longer meets these criteria, you can reassess it.Article milestonesDateProcessResultAugust 25, 2010Good article nomineeListed This article is rated GA-class on Wikipedia's content assessment scale.It is of interest to the following WikiProjects:Albums This article is within the scope of WikiProject Albums, an attempt at building a usef...

Islam Shah Suri (reinado: 1545-1554) fue el segundo gobernante de la dinastía Sur que gobernó parte de la India en el siglo de mid-16th. Su nombre original era Jalal Khan y fue el segundo hijo de Sher Shah Suri Historia A la muerte de su padre, una reunión de emergencia de los nobles eligió a Jalal Khan para ser el sucesor en lugar de su hermano mayor, Adil Khan, ya que había mostrado una mayor capacidad militar. Jalal Khan fue coronado el 26 de mayo de 1545 y se le dio el título Islam ...

Acest articol sau această secțiune are bibliografia incompletă sau inexistentă. Puteți contribui prin adăugarea de referințe în vederea susținerii bibliografice a afirmațiilor pe care le conține. Word DocumentExtensie de fișier.docTip MIMEapplication/mswordUTIcom.microsoft.word.doc[1]Dezvoltat deMicrosoftTipul formatuluiWord documentContainer pentruText, ImagineModifică text .DOC, scris și .doc, o abreviere de la cuvântul englez document, este extensia numelui de ...