If is the trivial group, this is the ordinary cohomology ring of , whereas if is contractible, it reduces to the cohomology ring of the classifying space (that is, the group cohomology of when G is finite.) If G acts freely on X, then the canonical map is a homotopy equivalence and so one gets:
Definitions
It is also possible to define the equivariant cohomology
of with coefficients in a
-module A; these are abelian groups.
This construction is the analogue of cohomology with local coefficients.
The construction should not be confused with other cohomology theories,
such as Bredon cohomology or the cohomology of invariant differential forms: if G is a compact Lie group, then, by the averaging argument[citation needed], any form may be made invariant; thus, cohomology of invariant differential forms does not yield new information.
Koszul duality is known to hold between equivariant cohomology and ordinary cohomology.
Relation with groupoid cohomology
For a Lie groupoid equivariant cohomology of a smooth manifold[1] is a special example of the groupoid cohomology of a Lie groupoid. This is because given a -space for a compact Lie group , there is an associated groupoid
whose equivariant cohomology groups can be computed using the Cartan complex which is the totalization of the de-Rham double complex of the groupoid. The terms in the Cartan complex are
where is the symmetric algebra of the dual Lie algebra from the Lie group , and corresponds to the -invariant forms. This is a particularly useful tool for computing the cohomology of for a compact Lie group since this can be computed as the cohomology of
where the action is trivial on a point. Then,
For example,
since the -action on the dual Lie algebra is trivial.
Homotopy quotient
The homotopy quotient, also called homotopy orbit space or Borel construction, is a “homotopically correct” version of the orbit space (the quotient of by its -action) in which is first replaced by a larger but homotopy equivalent space so that the action is guaranteed to be free.
To this end, construct the universal bundleEG → BG for G and recall that EG admits a free G-action. Then the product EG × X —which is homotopy equivalent to X since EG is contractible—admits a “diagonal” G-action defined by (e,x).g = (eg,g−1x): moreover, this diagonal action is free since it is free on EG. So we define the homotopy quotient XG to be the orbit space (EG × X)/G of this free G-action.
In other words, the homotopy quotient is the associated X-bundle over BG obtained from the action of G on a space X and the principal bundle EG → BG. This bundle X → XG → BG is called the Borel fibration.
Let X be a complex projective algebraic curve. We identify X as a topological space with the set of the complex points , which is a compact Riemann surface. Let G be a complex simply connected semisimple Lie group. Then any principal G-bundle on X is isomorphic to a trivial bundle, since the classifying space is 2-connected and X has real dimension 2. Fix some smooth G-bundle on X. Then any principal G-bundle on is isomorphic to . In other words, the set of all isomorphism classes of pairs consisting of a principal G-bundle on X and a complex-analytic structure on it can be identified with the set of complex-analytic structures on or equivalently the set of holomorphic connections on X (since connections are integrable for dimension reason). is an infinite-dimensional complex affine space and is therefore contractible.
Let be the group of all automorphisms of (i.e., gauge group.) Then the homotopy quotient of by classifies complex-analytic (or equivalently algebraic) principal G-bundles on X; i.e., it is precisely the classifying space of the discrete group .
Let E be an equivariant vector bundle on a G-manifold M. It gives rise to a vector bundle on the homotopy quotient so that it pulls-back to the bundle over . An equivariant characteristic class of E is then an ordinary characteristic class of , which is an element of the completion of the cohomology ring . (In order to apply Chern–Weil theory, one uses a finite-dimensional approximation of EG.)
Alternatively, one can first define an equivariant Chern class and then define other characteristic classes as invariant polynomials of Chern classes as in the ordinary case; for example, the equivariant Todd class of an equivariant line bundle is the Todd function evaluated at the equivariant first Chern class of the bundle. (An equivariant Todd class of a line bundle is a power series (not a polynomial as in the non-equivariant case) in the equivariant first Chern class; hence, it belongs to the completion of the equivariant cohomology ring.)
In the non-equivariant case, the first Chern class can be viewed as a bijection between the set of all isomorphism classes of complex line bundles on a manifold M and [2] In the equivariant case, this translates to: the equivariant first Chern gives a bijection between the set of all isomorphism classes of equivariant complex line bundles and .
Localization theorem
This section needs expansion. You can help by adding to it. (April 2014)
Behrend, K. (2004). "Cohomology of stacks"(PDF). Intersection theory and moduli. ICTP Lecture Notes. Vol. 19. pp. 249–294. ISBN9789295003286. PDF page 10 has the main result with examples.