becomes a fiber bundle with structure group G, in fact a principal bundle for G. The interest in the classifying space concept really arises from the fact that in this case Y has a universal property with respect to principal G-bundles, in the homotopy category. This is actually more basic than the condition that the higher homotopy groups vanish: the fundamental idea is, given G, to find such a contractible space Y on which G acts freely. (The weak equivalence idea of homotopy theory relates the two versions.) In the case of the circle example, what is being said is that we remark that an infinite cyclic group C acts freely on the real lineR, which is contractible. Taking X as the quotient space circle, we can regard the projection π from R = Y to X as a helix in geometrical terms, undergoing projection from three dimensions to the plane. What is being claimed is that π has a universal property amongst principal C-bundles; that any principal C-bundle in a definite way 'comes from' π.
Formalism
A more formal statement takes into account that G may be a topological group (not simply a discrete group), and that group actions of G are taken to be continuous; in the absence of continuous actions the classifying space concept can be dealt with, in homotopy terms, via the Eilenberg–MacLane space construction. In homotopy theory the definition of a topological space BG, the classifying space for principal G-bundles, is given, together with the space EG which is the total space of the universal bundle over BG. That is, what is provided is in fact a continuous mapping
Assume that the homotopy category of CW complexes is the underlying category, from now on. The classifying property required of BG in fact relates to π. We must be able to say that given any principal G-bundle
over a space Z, there is a classifying map φ from Z to BG, such that is the pullback of π along φ. In less abstract terms, the construction of by 'twisting' should be reducible via φ to the twisting already expressed by the construction of π.
For this to be a useful concept, there evidently must be some reason to believe such spaces BG exist. The early work on classifying spaces introduced constructions (for example, the bar construction), that gave concrete descriptions of BG as a simplicial complex for an arbitrary discrete group. Such constructions make evident the connection with group cohomology.
Specifically, let EG be the weak simplicial complex whose n- simplices are the ordered (n+1)-tuples of elements of G. Such an n-simplex attaches to the (n−1) simplices in the same way a standard simplex attaches to its faces, where means this vertex is deleted. The complex EG is contractible. The group G acts on EG by left multiplication,
and only the identity e takes any simplex to itself. Thus the action of G on EG is a covering space action and the quotient map is the universal cover of the orbit space , and BG is a .[2]
In abstract terms (which are not those originally used around 1950 when the idea was first introduced) this is a question of whether a certain functor is representable: the contravariant functor from the homotopy category to the category of sets, defined by
h(Z) = set of isomorphism classes of principal G-bundles on Z.
The infinite-dimensional projective space (the direct limit of finite-dimensional projective spaces) is a classifying space for the cyclic group The total space is (the direct limit of spheres Alternatively, one may use Hilbert space with the origin removed; it is contractible).
The space is the classifying space for the cyclic group Here, is understood to be a certain subset of the infinite dimensional Hilbert space with the origin removed; the cyclic group is considered to act on it by multiplication with roots of unity.
The unordered configuration space is the classifying space of the Artin braid group,[3] and the ordered configuration space is the classifying space for the pure Artin braid group
An example of a classifying space is that when G is cyclic of order two; then BG is real projective space of infinite dimension, corresponding to the observation that EG can be taken as the contractible space resulting from removing the origin in an infinite-dimensional Hilbert space, with G acting via v going to −v, and allowing for homotopy equivalence in choosing BG. This example shows that classifying spaces may be complicated.
Generalizations include those for classifying foliations, and the classifying toposes for logical theories of the predicate calculus in intuitionistic logic that take the place of a 'space of models'.