Dihydrofolate reductase

DHFR
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesDHFR, DHFRP1, DYR, dihydrofolate reductase
External IDsOMIM: 126060; MGI: 94890; HomoloGene: 56470; GeneCards: DHFR; OMA:DHFR - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000791
NM_001290354
NM_001290357

NM_010049

RefSeq (protein)

NP_000782
NP_001277283
NP_001277286

NP_034179

Location (UCSC)Chr 5: 80.63 – 80.65 MbChr 13: 92.49 – 92.53 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Dihydrofolate reductase, or DHFR, is an enzyme that reduces dihydrofolic acid to tetrahydrofolic acid, using NADPH as an electron donor, which can be converted to the kinds of tetrahydrofolate cofactors used in one-carbon transfer chemistry. In humans, the DHFR enzyme is encoded by the DHFR gene.[5][6] It is found in the q14.1 region of chromosome 5.[7]

There are two structural classes of DHFR, evolutionarily unrelated to each other. The former is usually just called DHFR and is found in bacterial chromosomes and animals. In bacteria, however, antibiotic pressure has caused this class to evolve different patterns of binding diaminoheterocyclic molecules, leading to many "types" named under this class, while mammalian ones remain highly similar.[8] The latter (type II), represented by the plastid-encoded R67, is a tiny enzyme that works by forming a homotetramer.[9]

Function

Dihydrofolate reductase
Identifiers
EC no.1.5.1.3
CAS no.9002-03-3
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

Dihydrofolate reductase converts dihydrofolate into tetrahydrofolate, a proton shuttle required for the de novo synthesis of purines, thymidylic acid, and certain amino acids. While the functional dihydrofolate reductase gene has been mapped to chromosome 5, multiple intronless processed pseudogenes or dihydrofolate reductase-like genes have been identified on separate chromosomes.[10]

Found in all organisms, DHFR has a critical role in regulating the amount of tetrahydrofolate in the cell. Tetrahydrofolate and its derivatives are essential for purine and thymidylate synthesis, which are important for cell proliferation and cell growth.[11] DHFR plays a central role in the synthesis of nucleic acid precursors, and it has been shown that mutant cells that completely lack DHFR require glycine, a purine, and thymidine to grow.[12] DHFR has also been demonstrated as an enzyme involved in the salvage of tetrahydrobiopterin from dihydrobiopterin.[13]


Structure

Dihydrofolate reductase
Crystal structure of chicken liver dihydrofolate reductase. PDB entry 8dfr
Identifiers
SymbolDHFR_1
PfamPF00186
Pfam clanCL0387
InterProIPR001796
PROSITEPDOC00072
SCOP21dhi / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

A central eight-stranded beta-pleated sheet makes up the main feature of the polypeptide backbone folding of DHFR.[14] Seven of these strands are parallel and the eighth runs antiparallel. Four alpha helices connect successive beta strands.[15] Residues 9–24 are termed "Met20" or "loop 1" and, along with other loops, are part of the major subdomain that surround the active site.[16] The active site is situated in the N-terminal half of the sequence, which includes a conserved Pro-Trp dipeptide; the tryptophan has been shown to be involved in the binding of substrate by the enzyme.[15]

Mechanism

General mechanism

The reduction of dihydrofolate to tetrahydrofolate catalyzed by DHFR

DHFR catalyzes the transfer of a hydride from NADPH to dihydrofolate with an accompanying protonation to produce tetrahydrofolate.[11] In the end, dihydrofolate is reduced to tetrahydrofolate and NADPH is oxidized to NADP+. The high flexibility of Met20 and other loops near the active site play a role in promoting the release of the product, tetrahydrofolate. In particular the Met20 loop helps stabilize the nicotinamide ring of the NADPH to promote the transfer of the hydride from NADPH to dihydrofolate.[16]

The mechanism of this enzyme is stepwise and steady-state random. Specifically, the catalytic reaction begins with the NADPH and the substrate attaching to the binding site of the enzyme, followed by the protonation and the hydride transfer from the cofactor NADPH to the substrate. However, two latter steps do not take place simultaneously in a same transition state.[17][18] In a study using computational and experimental approaches, Liu et al conclude that the protonation step precedes the hydride transfer.[19]

DHFR (Met20 loop highlighted) + NADPH + folate

DHFR's enzymatic mechanism is shown to be pH dependent, particularly the hydride transfer step, since pH changes are shown to have remarkable influence on the electrostatics of the active site and the ionization state of its residues.[19] The acidity of the targeted nitrogen on the substrate is important in the binding of the substrate to the enzyme's binding site which is proved to be hydrophobic even though it has direct contact to water.[17][20] Asp27 is the only charged hydrophilic residue in the binding site, and neutralization of the charge on Asp27 may alter the pKa of the enzyme. Asp27 plays a critical role in the catalytic mechanism by helping with protonation of the substrate and restraining the substrate in the conformation favorable for the hydride transfer.[21][17][20] The protonation step is shown to be associated with enol tautomerization even though this conversion is not considered favorable for the proton donation.[18] A water molecule is proved to be involved in the protonation step.[22][23][24] Entry of the water molecule to the active site of the enzyme is facilitated by the Met20 loop.[25]

Conformational changes of DHFR

The closed structure is depicted in red and the occluded structure is depicted in green in the catalytic scheme. In the structure, DHF and THF are colored red, NADPH is colored yellow, and Met20 residue is colored blue.

The catalytic cycle of the reaction catalyzed by DHFR incorporates five important intermediate: holoenzyme (E:NADPH), Michaelis complex (E:NADPH:DHF), ternary product complex (E:NADP+:THF), tetrahydrofolate binary complex (E:THF), and THF‚NADPH complex (E:NADPH:THF). The product (THF) dissociation step from E:NADPH:THF to E:NADPH is the rate determining step during steady-state turnover.[21]

Conformational changes are critical in DHFR's catalytic mechanism.[26] The Met20 loop of DHFR is able to open, close or occlude the active site.[23][17] Correspondingly, three different conformations classified as the opened, closed and occluded states are assigned to Met20. In addition, an extra distorted conformation of Met20 was defined due to its indistinct characterization results.[23] The Met20 loop is observed in its occluded conformation in the three product ligating intermediates, where the nicotinamide ring is occluded from the active site. This conformational feature accounts for the fact that the substitution of NADP+ by NADPH is prior to product dissociation. Thus, the next round of reaction can occur upon the binding of substrate.[21]

R67 DHFR

R67 dihydrofolate reductase
R67 in complex with DHF and NADP+, monomer. PDB entry 2rk1.
Identifiers
SymbolDHFR_2
PfamPF06442
InterProIPR009159
SCOP21vif / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Due to its unique structure and catalytic features, R67 DHFR is widely studied. R67 DHFR is a type II R-plasmid-encoded DHFR without geneticay or structural relation to the E. coli chromosomal DHFR. It is a homotetramer that possesses the 222 symmetry with a single active site pore that is exposed to solvent.[27] This symmetry of active site results in the different binding mode of the enzyme: It can bind with two dihydrofolate (DHF) molecules with positive cooperativity or two NADPH molecules with negative cooperativity, or one substrate plus one, but only the latter one has the catalytical activity.[28] Compare with E. coli chromosomal DHFR, it has higher Km in binding dihydrofolate (DHF) and NADPH. The much lower catalytical kinetics show that hydride transfer is the rate determine step rather than product (THF) release.[29]

In the R67 DHFR structure, the homotetramer forms an active site pore. In the catalytical process, DHF and NADPH enters into the pore from opposite position. The π-π stacking interaction between NADPH's nicotinamide ring and DHF's pteridine ring tightly connect two reactants in the active site. However, the flexibility of p-aminobenzoylglutamate tail of DHF was observed upon binding which can promote the formation of the transition state.[30]

Clinical significance

DHFR mutations cause dihydrofolate reductase deficiency, a rare autosomal recessive inborn error of folate metabolism that results in megaloblastic anemia, pancytopenia and severe cerebral folate deficiency. These issues can be overcome by supplementation with a reduced form of folate, usually folinic acid.[10][31][32]

Therapeutic applications

DHFR is an attractive pharmaceutical target for inhibition due to its pivotal role in DNA precursor (thymine) synthesis. Trimethoprim, an antibiotic, inhibits bacterial DHFR while methotrexate, a chemotherapy agent, inhibits mammalian DHFR. However, resistance has developed against some drugs, as a result of mutational changes in DHFR itself.[33]

Cancer

DHFR is responsible for the levels of tetrahydrofolate in a cell, and the inhibition of DHFR can limit the growth and proliferation of cells that are characteristic of cancer and bacterial infections. Methotrexate, a competitive inhibitor of DHFR, is one such anticancer drug that inhibits DHFR.[34]

Folate is necessary for growth,[35] and the pathway of the metabolism of folate is a target in developing treatments for cancer. DHFR is one such target. A regimen of fluorouracil, doxorubicin, and methotrexate was shown to prolong survival in patients with advanced gastric cancer.[36] Further studies into inhibitors of DHFR can lead to more ways to treat cancer.

Infection

Bacteria also need DHFR to grow and multiply and hence inhibitors selective for bacterial DHFR have found application as antibacterial agents.[37] Trimethoprim has shown to have activity against a variety of Gram-positive bacterial pathogens.[37] However, resistance to trimethoprim and other drugs aimed at DHFR can arise due to a variety of mechanisms, limiting the success of their therapeutical uses.[38][39][40] Resistance can arise from DHFR gene amplification, mutations in DHFR,[41][42] decrease in the uptake of the drugs, among others. Regardless, trimethoprim and sulfamethoxazole in combination has been used as an antibacterial agent for decades.[37]

Pyrimethamine is a widely used antiprotozoal agent.[43]

Other classes of compounds that target DHFR in general, and bacterial DHFRs in particular, belong to the classes such as diaminopteridines, diaminotriazines, diaminopyrroloquinazolines, stilbenes, chalcones, deoxybenzoins, diaminoquinazolines, diaminopyrroloquinazolines, to name but a few.

Potential anthrax treatment

Structural alignment of chromosomal (Type I) dihydrofolate reductase from Bacillus anthracis (BaDHFR), Staphylococcus aureus (SaDHFR), Escherichia coli (EcDHFR), and Streptococcus pneumoniae (SpDHFR)

Dihydrofolate reductase from Bacillus anthracis (BaDHFR) is a validated drug target in the treatment of the infectious disease, anthrax. BaDHFR is less sensitive to trimethoprim analogs than is dihydrofolate reductase from other species such as Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae. A structural alignment of dihydrofolate reductase from all four species shows that only BaDHFR has the combination phenylalanine and tyrosine in positions 96 and 102, respectively.

BaDHFR's resistance to trimethoprim analogs is due to these two residues (F96 and Y102), which also confer improved kinetics and catalytic efficiency.[44] Current research uses active site mutants in BaDHFR to guide lead optimization for new antifolate inhibitors.[44]

As a research tool

DHFR has been used as a tool to detect protein–protein interactions in a protein-fragment complementation assay (PCA), using a split-protein approach.[45]

DHFR-lacking CHO cells are the most commonly used cell line for the production of recombinant proteins. These cells are transfected with a plasmid carrying the dhfr gene and the gene for the recombinant protein in a single expression system, and then subjected to selective conditions in thymidine-lacking medium. Only the cells with the exogenous DHFR gene along with the gene of interest survive. Supplementation of this medium with methotrexate, a competitive inhibitor of DHFR, can further select for those cells expressing the highest levels of DHFR, and thus, select for the top recombinant protein producers.[46]

Interactions

Dihydrofolate reductase has been shown to interact with GroEL[47] and Mdm2.[48]

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles.[§ 1]

[[File:
FluoropyrimidineActivity_WP1601go to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to PubChem Compoundgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
FluoropyrimidineActivity_WP1601go to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to PubChem Compoundgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Fluorouracil (5-FU) Activity edit]]
Fluorouracil (5-FU) Activity edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "FluoropyrimidineActivity_WP1601".

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000228716Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000021707Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Chen MJ, Shimada T, Moulton AD, Harrison M, Nienhuis AW (December 1982). "Intronless human dihydrofolate reductase genes are derived from processed RNA molecules". Proceedings of the National Academy of Sciences of the United States of America. 79 (23): 7435–9. Bibcode:1982PNAS...79.7435C. doi:10.1073/pnas.79.23.7435. PMC 347354. PMID 6961421.
  6. ^ Chen MJ, Shimada T, Moulton AD, Cline A, Humphries RK, Maizel J, Nienhuis AW (March 1984). "The functional human dihydrofolate reductase gene". The Journal of Biological Chemistry. 259 (6): 3933–43. doi:10.1016/S0021-9258(17)43186-3. PMID 6323448.
  7. ^ "DHFR dihydrofolate reductase [Homo sapiens (human)]". Gene - NCBI. Retrieved 21 February 2023.
  8. ^ Smith SL, Patrick P, Stone D, Phillips AW, Burchall JJ (November 1979). "Porcine liver dihydrofolate reductase. Purification, properties, and amino acid sequence". The Journal of Biological Chemistry. 254 (22): 11475–84. doi:10.1016/S0021-9258(19)86510-9. PMID 500653.
  9. ^ Krahn JM, Jackson MR, DeRose EF, Howell EE, London RE (25 December 2007). "Crystal structure of a type II dihydrofolate reductase catalytic ternary complex". Biochemistry. 46 (51): 14878–88. doi:10.1021/bi701532r. PMC 3743094. PMID 18052202.
  10. ^ a b "Entrez Gene: DHFR dihydrofolate reductase".
  11. ^ a b Schnell JR, Dyson HJ, Wright PE (2004). "Structure, dynamics, and catalytic function of dihydrofolate reductase". Annual Review of Biophysics and Biomolecular Structure. 33 (1): 119–40. doi:10.1146/annurev.biophys.33.110502.133613. PMID 15139807. S2CID 28611812.
  12. ^ Urlaub G, Chasin LA (July 1980). "Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity". Proceedings of the National Academy of Sciences of the United States of America. 77 (7): 4216–20. Bibcode:1980PNAS...77.4216U. doi:10.1073/pnas.77.7.4216. PMC 349802. PMID 6933469.
  13. ^ Crabtree MJ, Tatham AL, Hale AB, Alp NJ, Channon KM (October 2009). "Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways". The Journal of Biological Chemistry. 284 (41): 28128–36. doi:10.1074/jbc.M109.041483. PMC 2788863. PMID 19666465.
  14. ^ Matthews DA, Alden RA, Bolin JT, Freer ST, Hamlin R, Xuong N, Kraut J, Poe M, Williams M, Hoogsteen K (July 1977). "Dihydrofolate reductase: x-ray structure of the binary complex with methotrexate". Science. 197 (4302): 452–5. Bibcode:1977Sci...197..452M. doi:10.1126/science.17920. PMID 17920.
  15. ^ a b Filman DJ, Bolin JT, Matthews DA, Kraut J (November 1982). "Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 Å resolution. II. Environment of bound NADPH and implications for catalysis". The Journal of Biological Chemistry. 257 (22): 13663–72. doi:10.1016/S0021-9258(18)33498-7. PMID 6815179.
  16. ^ a b Osborne MJ, Schnell J, Benkovic SJ, Dyson HJ, Wright PE (August 2001). "Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism". Biochemistry. 40 (33): 9846–59. doi:10.1021/bi010621k. PMID 11502178.
  17. ^ a b c d Rod TH, Brooks CL (July 2003). "How dihydrofolate reductase facilitates protonation of dihydrofolate". Journal of the American Chemical Society. 125 (29): 8718–9. doi:10.1021/ja035272r. PMID 12862454.
  18. ^ a b Wan Q, Bennett BC, Wilson MA, Kovalevsky A, Langan P, Howell EE, Dealwis C (December 2014). "Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography". Proceedings of the National Academy of Sciences of the United States of America. 111 (51): 18225–30. Bibcode:2014PNAS..11118225W. doi:10.1073/pnas.1415856111. PMC 4280638. PMID 25453083.
  19. ^ a b Liu CT, Francis K, Layfield JP, Huang X, Hammes-Schiffer S, Kohen A, Benkovic SJ (December 2014). "Escherichia coli dihydrofolate reductase catalyzed proton and hydride transfers: temporal order and the roles of Asp27 and Tyr100". Proceedings of the National Academy of Sciences of the United States of America. 111 (51): 18231–6. Bibcode:2014PNAS..11118231L. doi:10.1073/pnas.1415940111. PMC 4280594. PMID 25453098.
  20. ^ a b Czekster CM, Vandemeulebroucke A, Blanchard JS (January 2011). "Kinetic and chemical mechanism of the dihydrofolate reductase from Mycobacterium tuberculosis". Biochemistry. 50 (3): 367–75. doi:10.1021/bi1016843. PMC 3074011. PMID 21138249.
  21. ^ a b c Fierke CA, Johnson KA, Benkovic SJ (June 1987). "Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli". Biochemistry. 26 (13): 4085–92. doi:10.1021/bi00387a052. PMID 3307916.
  22. ^ Reyes VM, Sawaya MR, Brown KA, Kraut J (February 1995). "Isomorphous crystal structures of Escherichia coli dihydrofolate reductase complexed with folate, 5-deazafolate, and 5,10-dideazatetrahydrofolate: mechanistic implications". Biochemistry. 34 (8): 2710–23. doi:10.1021/bi00008a039. PMID 7873554.
  23. ^ a b c Sawaya MR, Kraut J (January 1997). "Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence". Biochemistry. 36 (3): 586–603. doi:10.1021/bi962337c. PMID 9012674.
  24. ^ Chen YQ, Kraut J, Blakley RL, Callender R (June 1994). "Determination by Raman spectroscopy of the pKa of N5 of dihydrofolate bound to dihydrofolate reductase: mechanistic implications". Biochemistry. 33 (23): 7021–6. doi:10.1021/bi00189a001. PMID 8003467.
  25. ^ Shrimpton P, Allemann RK (June 2002). "Role of water in the catalytic cycle of E. coli dihydrofolate reductase". Protein Science. 11 (6): 1442–51. doi:10.1110/ps.5060102. PMC 2373639. PMID 12021443.
  26. ^ Antikainen NM, Smiley RD, Benkovic SJ, Hammes GG (December 2005). "Conformation coupled enzyme catalysis: single-molecule and transient kinetics investigation of dihydrofolate reductase". Biochemistry. 44 (51): 16835–43. doi:10.1021/bi051378i. PMID 16363797.
  27. ^ Narayana N, Matthews DA, Howell EE, Nguyen-huu X (November 1995). "A plasmid-encoded dihydrofolate reductase from trimethoprim-resistant bacteria has a novel D2-symmetric active site". Nature Structural Biology. 2 (11): 1018–25. doi:10.1038/nsb1195-1018. PMID 7583655. S2CID 11914241.
  28. ^ Bradrick TD, Beechem JM, Howell EE (September 1996). "Unusual binding stoichiometries and cooperativity are observed during binary and ternary complex formation in the single active pore of R67 dihydrofolate reductase, a D2 symmetric protein". Biochemistry. 35 (35): 11414–24. doi:10.1021/bi960205d. PMID 8784197.
  29. ^ Park H, Zhuang P, Nichols R, Howell EE (January 1997). "Mechanistic studies of R67 dihydrofolate reductase. Effects of pH and an H62C mutation". The Journal of Biological Chemistry. 272 (4): 2252–8. doi:10.1074/jbc.272.4.2252. PMID 8999931.
  30. ^ Kamath G, Howell EE, Agarwal PK (October 2010). "The tail wagging the dog: insights into catalysis in R67 dihydrofolate reductase". Biochemistry. 49 (42): 9078–88. doi:10.1021/bi1007222. PMID 20795731.
  31. ^ Banka S, Blom HJ, Walter J, Aziz M, Urquhart J, Clouthier CM, Rice GI, de Brouwer AP, Hilton E, Vassallo G, Will A, Smith DE, Smulders YM, Wevers RA, Steinfeld R, Heales S, Crow YJ, Pelletier JN, Jones S, Newman WG (February 2011). "Identification and characterization of an inborn error of metabolism caused by dihydrofolate reductase deficiency". American Journal of Human Genetics. 88 (2): 216–25. doi:10.1016/j.ajhg.2011.01.004. PMC 3035707. PMID 21310276.
  32. ^ Nyhan WL, Hoffmann GF, Barshop BA (30 December 2011). Atlas of Inherited Metabolic Diseases 3E. CRC Press. pp. 141–. ISBN 978-1-4441-4948-7.
  33. ^ Cowman AF, Lew AM (November 1989). "Antifolate drug selection results in duplication and rearrangement of chromosome 7 in Plasmodium chabaudi". Molecular and Cellular Biology. 9 (11): 5182–8. doi:10.1128/mcb.9.11.5182. PMC 363670. PMID 2601715.
  34. ^ Li R, Sirawaraporn R, Chitnumsub P, Sirawaraporn W, Wooden J, Athappilly F, Turley S, Hol WG (January 2000). "Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs". Journal of Molecular Biology. 295 (2): 307–23. doi:10.1006/jmbi.1999.3328. PMID 10623528. S2CID 24527344.
  35. ^ Bailey SW, Ayling JE (September 2009). "The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake". Proceedings of the National Academy of Sciences of the United States of America. 106 (36): 15424–9. doi:10.1073/pnas.0902072106. PMC 2730961. PMID 19706381.
  36. ^ Murad AM, Santiago FF, Petroianu A, Rocha PR, Rodrigues MA, Rausch M (July 1993). "Modified therapy with 5-fluorouracil, doxorubicin, and methotrexate in advanced gastric cancer". Cancer. 72 (1): 37–41. doi:10.1002/1097-0142(19930701)72:1<37::AID-CNCR2820720109>3.0.CO;2-P. PMID 8508427.
  37. ^ a b c Hawser S, Lociuro S, Islam K (March 2006). "Dihydrofolate reductase inhibitors as antibacterial agents". Biochemical Pharmacology. 71 (7): 941–8. doi:10.1016/j.bcp.2005.10.052. PMID 16359642.
  38. ^ Narayana N, Matthews DA, Howell EE, Nguyen-huu X (November 1995). "A plasmid-encoded dihydrofolate reductase from trimethoprim-resistant bacteria has a novel D2-symmetric active site". Nature Structural Biology. 2 (11): 1018–25. doi:10.1038/nsb1195-1018. PMID 7583655. S2CID 11914241.
  39. ^ Huennekens FM (June 1996). "In search of dihydrofolate reductase". Protein Science. 5 (6): 1201–8. doi:10.1002/pro.5560050626. PMC 2143423. PMID 8762155.
  40. ^ Banerjee D, Mayer-Kuckuk P, Capiaux G, Budak-Alpdogan T, Gorlick R, Bertino JR (July 2002). "Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1587 (2–3): 164–73. doi:10.1016/S0925-4439(02)00079-0. PMID 12084458.
  41. ^ Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R (December 2011). "Evolutionary paths to antibiotic resistance under dynamically sustained drug selection". Nature Genetics. 44 (1): 101–5. doi:10.1038/ng.1034. PMC 3534735. PMID 22179135.
  42. ^ Rodrigues JV, Bershtein S, Li A, Lozovsky ER, Hartl DL, Shakhnovich EI (March 2016). "Biophysical principles predict fitness landscapes of drug resistance". Proceedings of the National Academy of Sciences of the United States of America. 113 (11): E1470-8. Bibcode:2016PNAS..113E1470R. doi:10.1073/pnas.1601441113. PMC 4801265. PMID 26929328.
  43. ^ Benkovic SJ, Fierke CA, Naylor AM (March 1988). "Insights into enzyme function from studies on mutants of dihydrofolate reductase". Science. 239 (4844): 1105–10. Bibcode:1988Sci...239.1105B. doi:10.1126/science.3125607. PMID 3125607.
  44. ^ a b Beierlein JM, Karri NG, Anderson AC (October 2010). "Targeted mutations of Bacillus anthracis dihydrofolate reductase condense complex structure−activity relationships". Journal of Medicinal Chemistry. 53 (20): 7327–36. doi:10.1021/jm100727t. PMC 3618964. PMID 20882962.
  45. ^ Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick SW (June 2008). "An in vivo map of the yeast protein interactome" (PDF). Science. 320 (5882): 1465–70. Bibcode:2008Sci...320.1465T. doi:10.1126/science.1153878. PMID 18467557. S2CID 1732896.
  46. ^ Ng SK (2012). "Generation of High-Expressing Cells by Methotrexate Amplification of Destabilized Dihydrofolate Reductase Selection Marker". Protein Expression in Mammalian Cells. Methods in Molecular Biology. Vol. 801. pp. 161–172. doi:10.1007/978-1-61779-352-3_11. ISBN 978-1-61779-351-6. PMID 21987253.
  47. ^ Mayhew M, da Silva AC, Martin J, Erdjument-Bromage H, Tempst P, Hartl FU (February 1996). "Protein folding in the central cavity of the GroEL-GroES chaperonin complex". Nature. 379 (6564): 420–6. Bibcode:1996Natur.379..420M. doi:10.1038/379420a0. PMID 8559246. S2CID 4310511.
  48. ^ Maguire M, Nield PC, Devling T, Jenkins RE, Park BK, Polański R, Vlatković N, Boyd MT (May 2008). "MDM2 regulates dihydrofolate reductase activity through monoubiquitination". Cancer Research. 68 (9): 3232–42. doi:10.1158/0008-5472.CAN-07-5271. PMC 3536468. PMID 18451149.

Further reading

This article incorporates text from the public domain Pfam and InterPro: IPR001796
This article incorporates text from the public domain Pfam and InterPro: IPR009159

Read other articles:

Senapan mesin kaliber .50 M2 Browning dikelilingi selongsong yang terpakai. Senapan mesin adalah senjata api tertanam maupun portabel, yang memiliki kemampuan menembak secara full-otomatis. Senapan mesin biasanya menembakkan peluru senapan yang diisi dari sabuk amunisi atau magazen berkapasitas besar. Senapang mesin lazim menembakkan beberapa ratus peluru per menit. Istilah senapan mesin juga sering dipakai oleh media massa dan oleh bidang hukum, untuk mendeskripsikan senjata api apapun yang ...

 

 

L’alphabet cyrillique serbe (en serbe : Српска ћирилица / Srpska ćirilica) est une variante de l'alphabet cyrillique utilisée pour écrire la langue serbe, adaptée en 1818 par le philologue et linguiste serbe Vuk Karadžić. C'est l'un des deux alphabets utilisés pour écrire le serbe standard moderne, l'autre étant l'alphabet latin de Gaj. Karadžić base son alphabet sur l'ancienne écriture slavo-serbe, suivant le principe « écrivez comme vous parlez et lis...

 

 

College or university diploma Not to be confused with Academic ranks. An academic degree is a qualification awarded to a student upon successful completion of a course of study in higher education, usually at a college or university. These institutions often offer degrees at various levels, usually divided into undergraduate and postgraduate degrees. The most common undergraduate degree is the bachelor's degree, although some educational systems offer lower-level undergraduate degrees such as...

Coppa delle Fiere 1964-1965Coupe des villes de foires 1964-1965 Competizione Coppa delle Fiere Sport Calcio Edizione 7ª Organizzatore Comitato privato Date 1964 – 23 giugno 1965 Partecipanti 48 Nazioni 24 Formula Eliminazione diretta A/R Sede finale Stadio Comunale (Torino) Risultati Vincitore  Ferencváros(1º titolo) Secondo  Juventus Semi-finalisti  Atlético Madrid Manchester Utd Un frangente della finale di Torino tra gli italiani della Juventus e i magiari del Fe...

 

 

Acartus hirtus Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Subfamili: Lamiinae Tribus: Acanthocinini Genus: Acartus Spesies: Acartus hirtus Acartus hirtus adalah spesies kumbang tanduk panjang yang berasal dari famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Acartus, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabkan k...

 

 

Atlanta HawksAtlanta Hawks musim 2023–2024WilayahTimurDivisiTenggaraDibentuk1946SejarahBuffalo Bisons1946Tri-Cities Blackhawks1946–1951Milwaukee Hawks1951–1955St. Louis Hawks1955–1968Atlanta Hawks1968–sekarang[1][2][3]ArenaState Farm ArenaLetakAtlanta, GeorgiaWarna timMerah obor, kuning legacy, hitam, abu-abu granit[4][5][6]       Sponsor utamaSharecare[7]PresidenTravis SchlenkManajer umumLandry FieldsPelati...

2020 single by Rise AgainstBroken Dreams, IncSingle by Rise Againstfrom the album Nowhere Generation ReleasedSeptember 16, 2020GenreHardcore punk Melodic hardcore Length3:53LabelLoma VistaSongwriter(s) Tim McIlrath Joe Principe Brandon Barnes Zach Blair Producer(s) Bill Stevenson Jason Livermore Andrew Berlin Chris Beeble Rise Against singles chronology House on Fire (2018) Broken Dreams, Inc (2020) Nowhere Generation (2021) Broken Dreams, Inc is a song by American punk rock band Rise Against...

 

 

Disambiguazione – Se stai cercando il personaggio fumettistico creato da Sergio Bonelli, vedi Esse-Esse. Otto Kruger Otto Kruger (Toledo, 6 settembre 1885 – Woodland Hills, 6 settembre 1974) è stato un attore statunitense. Indice 1 Biografia 2 Filmografia parziale 2.1 Cinema 2.2 Televisione 3 Doppiatori italiani 4 Altri progetti 5 Collegamenti esterni Biografia Pronipote dell'ex-presidente del Sudafrica Paul Kruger, lavorò nel mondo dello spettacolo sin da bambino, fino al debutto a Br...

 

 

  لمعانٍ أخرى، طالع المحكمة العليا (توضيح). جزء من سلسلة مقالات سياسة هندوراسهندوراس الدستور الدستور السلطة التنفيذية الرئيس مجلس الوزراء السلطة التشريعية البرلمان السلطة القضائية المحكمة العليا الانتخابات الانتخابات الأحزاب السياسية السياسة الخارجية العلاقات ال�...

LlíviaMunisipalitas Lambang kebesaranLocation of Llívia in the province of GironaCountry SpainAutonomous community CataloniaProvinsiGironaComarcaCerdanyaJudicial districtPuigcerdàPemerintahan • AlcaldeJosep Pous Rodríguez (2007) (CIU)Luas • Total12,83 km2 (495 sq mi)Ketinggian1.224 m (4,016 ft)Populasi (2009) • Total1.589 • Kepadatan1,2/km2 (3,2/sq mi)DemonimLliviensesZona waktuUTC+1 (CET) �...

 

 

Israeli generalAvigdor Ben-GalNative nameאביגדור בן-גלBirth nameJanusz Ludwig GoldlustNickname(s)YanushBorn1936Łódź, Second Polish RepublicDiedFebruary 13, 2016IsraelAllegiance IsraelService/branch Israel Defense ForcesYears of service1956-1979Rank Aluf (Major General)Commands heldNorthern CommandBattles/wars1956 Suez CrisisSix-Day WarYom Kippur War Avigdor Yanush Ben-Gal (Hebrew: אביגדור בן-גל; 1936 – February 13, 2016; born Janusz Goldlust) was an Israel...

 

 

Cinema of Bangladesh List of Bangladeshi films 1928–1947 India 1948–1958 East Pakistan 1959–1970 East Pakistan 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971–1979 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980s 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990s 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000s 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010s 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020s 2020 2021 2022 2023 vte A list o...

Lastminute.comsito webLogo URLwww.lastminute.com Tipo di sitoServizio di prenotazione online ProprietarioBravoNext S. A. Creato da Martha Lane Fox Brent Hoberman Lancio2 settembre 1998 Stato attualeattivo Modifica dati su Wikidata · Manuale lastminute.com è un sito web di viaggi lanciato nel 1998 e di proprietà dell'azienda svizzera BravoNext (parte del lastminute.com Group). Si tratta di un comparatore di prezzi per l'organizzazione di viaggi last minute. Indice 1 Storia 2 Note 3 Alt...

 

 

Mythological creatures of Greek mythology This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Centaurides – news · newspapers · books · scholar · JSTOR (March 2021) (Learn how and when to remove this message) CentauridesCentauress, by John La Farge,in the Brooklyn MuseumGroupingLegendary creatureSub groupingHybr...

 

 

Bandar Udara PerthIATA: PERICAO: YPPHWMO: 94610InformasiJenisPublikPemilikUtilities Trust of Australia (38%)Future Fund (30%)PengelolaPerth Airport Pty LtdMelayaniPerth Metropolitan RegionLokasiPerth AirportMaskapai penghubungAlliance AirlinesCobhamNetwork AviationQantasSkippers AviationVirgin Australia Regional AirlinesMaskapai utamaJetstarVirgin AustraliaKetinggian dpl mdplKoordinat31°56′24″S 115°57′54″E / 31.94°S 115.965°E / -31.94; 115.965 Sit...

In law, an inference of a particular fact For the term in Catholic canon law, see Presumption (Catholic canon law). In law, a presumption is an inference of a particular fact.[1] There are two types of presumptions: rebuttable presumptions and irrebuttable (or conclusive) presumptions.[2]: 25  A rebuttable presumption will either shift the burden of production (requiring the disadvantaged party to produce some evidence to the contrary) or the burden of proof (r...

 

 

Genre of music Not to be confused with New wave music. New-ageStylistic originsElectronicambientfolkworldclassicalkrautrockrockeasy listeningminimalprogressive rockCultural origins1960s and early 1970s, Europe and United StatesSubgenres Space music biomusic progressive electronic Neoclassical new-age music Fusion genresCeltic fusionOther topics New Age meditation environmentalism List of new-age music artists vaporwave New-age is a genre of music intended to create artistic inspiration, relax...

 

 

Advisory non-departmental public body of the United Kingdom government Not to be confused with Science Council. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (January 2024...

1975 South African Grand Prix Race detailsDate 1 March 1975Official name XXI Lucky Strike Grand Prix of South AfricaLocation KyalamiTransvaal Province, South AfricaCourse Permanent racing facilityCourse length 4.104 km (2.550 miles)Distance 78 laps, 320.112 km (198.908 miles)Weather SunnyPole positionDriver Carlos Pace Brabham-FordTime 1:16.41[1]Fastest lapDriver Carlos Pace Brabham-FordTime 1:17.20[2] on lap 11PodiumFirst Jody Scheckter Tyrrell-FordSecond Carlos Reutemann Br...

 

 

Adna Chaffee 2° Capo di stato maggiore dell'Esercito degli Stati UnitiDurata mandato19 agosto 1904 –14 gennaio 1906 PredecessoreSamuel B. M. Young SuccessoreJohn C. Bates Dati generaliProfessioneMilitare Adna Romanza ChaffeeAdna Chaffee durante la guerra di secessioneNascitaOrwell, 14 aprile 1842 MorteLos Angeles, 1º novembre 1914 Dati militariPaese servito Unione  Stati Uniti Forza armataUnited States Army Anni di servizio1861 - 1906 GradoTenente generale ...