Ribonucleotide reductase (RNR), also known as ribonucleoside diphosphate reductase, is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides.[1][2] It catalyzes this formation by removing the 2'-hydroxyl group of the ribose ring of nucleoside diphosphates (or triphosphates depending on the class of RNR). This reduction produces deoxyribonucleotides.[3] Deoxyribonucleotides in turn are used in the synthesis of DNA. The reaction catalyzed by RNR is strictly conserved in all living organisms.[4] Furthermore, RNR plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair.[5] A somewhat unusual feature of the RNR enzyme is that it catalyzes a reaction that proceeds via a free radical mechanism of action.[6][7] The substrates for RNR are ADP, GDP, CDP and UDP. dTDP (deoxythymidine diphosphate) is synthesized by another enzyme (thymidylate kinase) from dTMP (deoxythymidine monophosphate).
Structure
Ribonucleotide reductases are divided into three classes. Class I RNR enzymes are constructed from large alpha subunit and small beta subunits which associate to form an active heterodimerictetramer. By reducing NDPs to 2'-dNDPs, the enzyme catalyses the de novo synthesis of deoxyribonucleotides (dNTPs), which are precursors to DNA synthesis and essential for cell proliferation.[8] Class II RNRs produce a 5'-deoxyadenosyl radical by homolytic cleavage of the C-Co bond in adenosylcobalamin. In addition, Class III RNRs contain a stable glycyl radical.[9]
Humans carry Class I RNRs. The alpha subunit is encoded by the RRM1 gene while there are two isoforms of the beta subunit, encoded by the RRM2 and RRM2B genes:
one mainly helical domain comprising the 220 N-terminal residues,
a second large ten-stranded α/β structure comprising 480 residues,
and a third small five-stranded α/β structure comprising 70 residues.
In Pfam, the second domain has been interpreted as two separate domains:
a shorter all-alpha N-terminal domain,
and a longer barrel C-terminal domain.
Protein family
Ribonucleotide reductase N-terminal
Crystallographic structure of the ribonucleotide reductase protein R1E from S. typhimurium. The protein is rainbow colored (N-terminus = blue, C-terminus = red) while dATP is depicted as sticks and a complexed magnesium ion as a grey sphere.[11]
The Class I beta subunit usually contains a di-metal center and a stable tyrosylradical. In humans, the beta subunit relies on a di-iron cofactor. In E. coli, the tyrosyl radical is located at position 122 (Y122) providing the stable radical for the Class I RNR2 subunits.[14] In A. aegypti, this tyrosyl radical is located at position 184 (Y184).[15] The tyrosyl radical is deeply buried inside the protein in a hydrophobic environment, located close to the iron center that is used in the stabilization of a tyrosyl radical. The structure of two μ-oxo-linked irons is dominated by ligands that serve as iron binding sites: four carboxylates [aspartate (D146), glutamate (E177, E240, and E274)] and two histidines (H180 and H277).[15] Association occurs between the C-terminus of RNR2 and the C-terminus of RNR1.[10] Enzymatic activity is dependent on association of the RNR1 and RNR2 subunits. The active site consists of the active dithiol groups from the RNR1 as well as the diferric center and the tyrosyl radical from the RNR2 subunit.
Other residues of RNR2, such as aspartate (D273), tryptophan (W48), and tyrosine (Y356) further stabilize the active-site tyrosyl radical thus allowing electron transfer.[10] These residues help in the transfer of the radical electron from tyrosine (Y122) of RNR2 to cysteine (C439) of RNR1. The electron transfer begins on RNR2 tyrosine (Y122) and continues in RNR2 to tryptophan (W48), which is separated from RNR1 tyrosine (Y731) by 2.5 nanometers. Electron transfer from RNR2 to RNR1 occurs via tyrosine (Y356 to Y731) and continues on through tyrosine (Y730) to cysteine (C439) in the active site.[16] Site-directed mutations of the RNR primary structure indicate that all residues cited above participate in the long distance transfer of the free radical to the active site.[10]
In A. aegypti mosquitoes, RNR1 retains most of the crucial amino acid residues, including aspartate (D64) and valine (V292 or V284), that are necessary in allosteric regulation; proline (P210 and P610), leucine (L453 and L473), and methionine (M603) residues that are located in the hydrophobic active site; cysteine (C225, C436 and C451) residues that are involved in removal of a hydrogen atom and transfer of the radical electron at the active site; cysteine (C225 and C436), asparagine (N434), and glutamate (E441) residues that bind the ribonucleotide substrate; tyrosine (Y723 and Y743) residues that dictate the radical transfer; and cysteine (C838 and C841) residues that are used in the regeneration of dithiol groups in the active site.[15]
The enzyme ribonucleotide reductase (RNR) catalyzes the de novo synthesis of dNDPs.[19] Catalysis of ribonucleoside 5’-diphosphates (NDPs) involves a reduction at the 2’-carbon of ribose 5-phosphate to form the 2’-deoxy derivative-reduced 2’-deoxyribonucleoside 5’-diphosphates (dNDPs). This reduction is initiated with the generation of a free radical. Following a single reduction, RNR requires electrons donated from the dithiol groups of the protein thioredoxin. Regeneration of thioredoxin occurs when nicotinamide adenine dinucleotide phosphate (NADPH) provides two hydrogen atoms that are used to reduce the disulfide groups of thioredoxin.
Three classes of RNR have similar mechanisms for the reduction of NDPs, but differ in the domain that generates the free radical, the specific metal in the metalloprotein structure, and the electron donors. All classes use free-radical chemistry.[10] Class I reductases use an iron center with ferrous to ferric conversion to generate a tyrosyl free radical. Reduction of NDP substrates occurs under aerobic conditions. Class I reductases are divided into IA and IB due to differences in regulation. Class IA reductases are distributed in eukaryotes, eubacteria, bacteriophages, and viruses. Class IB reductases are found in eubacteria. Class IB reductases can also use a radical generated with the stabilization of a binuclear manganese center. Class II reductases generate the free radical 5’-deoxyadenosyl radical from cobalamin (coenzyme B12) and have a simpler structure than class I and class III reductases. Reduction of NDPs or ribonucleotide 5’-triphosphates (NTPs) occurs under either aerobic or anaerobic conditions. Class II reductases are distributed in archaebacteria, eubacteria, and bacteriophages. Class III reductases use a glycine radical generated with the help of an S-adenosyl methionine and an iron sulphur center. Reduction of NTPs is limited to anaerobic conditions. Class III reductases are distributed in archaebacteria, eubacteria, and bacteriophages.[10][15] Organisms are not limited to having one class of enzymes. For example, E. coli have both class I and class III RNR.
Catalytic reduction mechanism
The mechanism that is currently accepted for the reduction of ribonucleotides to deoxyribonucleotides is depicted in the following scheme. The first step involves the abstraction of the 3’- H of substrate 1 by radical Cys439. Subsequently, the reaction involves the elimination of one water molecule from carbon C-2’ of the ribonucleotide, catalyzed by Cys225 and Glu441. In the third step there is a hydrogen atom transfer from Cys225 to carbon C-2’ of the 2’-ketyl radical 3, after previous proton transfer from Cys462 to Cys225. At the end of this step, a radical anionic disulfide bridge and the closed-shell ketone intermediate 4 are obtained. This intermediate has been identified during the conversion of several 2’-substituted substrate analogues, as well as with the natural substrate[20] interacting with enzyme mutants. The next step is the oxidation of the anionic disulfide bridge, with concomitant reduction of the substrate, generating 5. The spin density shifts from the sulphur atoms to the C-3' atom of the substrate, with simultaneous proton transfer from Glu441 to carbon C-3'. The last step is the reverse of the first step and involves a hydrogen transfer from Cys439 to C-3’, regenerating the initial radical and resulting in the final product 6.
Theoretical models of some steps of these mechanisms using the full model of the R1 protein can be found at the studies performed by Cerqueira et al..[21][22]
Regulation
Class I RNR comprises RNR1 and RNR2 subunits, which can associate to form a heterodimeric tetramer.[6] RNR1 contains both allosteric sites, mediating regulation of substrate specificity and activity.[12] Depending on the allosteric configuration, one of the four ribonucleotides binds to the active site.
Regulation of RNR is designed to maintain balanced quantities of dNTPs. Binding of effector molecules either increases or decreases RNR activity. When ATP binds to the allosteric activity site, it activates RNR. In contrast, when dATP binds to this site, it deactivates RNR.[10] In addition to controlling activity, the allosteric mechanism also regulates the substrate specificity and ensures the enzyme produces an equal amount of each dNTP for DNA synthesis.[10] In all classes, binding of ATP or dATP to the allosteric site induces reduction of cytidine 5’-diphosphate (CDP) and uridine 5’-diphosphate (UDP); 2’-deoxyguanosine 5’-triphosphate (dGTP) induces reduction of adenosine 5’-diphosphate (ADP); and 2’-deoxythymidine 5’-triphosphate (dTTP) induces reduction of guanosine 5’-diphosphate (GDP) (Figure 1).
Class IB reductases are not inhibited by dATP because they lack approximately 50 N-terminal amino acids required for the allosteric activity site.[23] Additionally, it is important that the activity of ribonucleotide reductase be under transcriptional and post-transcriptional control because the synthesis of damage-free DNA relies on a balanced pool of deoxyribonucleotides.[24] Eukaryotic cells with class IA reductases have a mechanism of negative control to turn off synthesis of dNTPs as they accumulate. This mechanism protects the cell from toxic and mutagenic effects that can arise from the overproduction of dNTPs because changes in balanced dNTP pools lead to DNA damage and cell death.[25][26] Although, the overproduction of dNTPs or an unbalanced supply of them can lead to misincorporation of nucleotides into DNA, the supply of dNTPs supply can allow for DNA repair. p53R2 is a small subunit of ribonucleotide reductase that can induce such repair. Changes within this p53 induced R2 homolog can cause depletion in mitochondrial DNA and consequently p53R2 serves a major factor in dNTP supply.[27]
Generally Class I RNR inhibitors can be divided in three main groups: translation inhibitors, which block the synthesis of the enzyme; dimerization inhibitors that prevent the association of the two RNR subunits (R1 and R2); and catalytic inhibitors that inactivate the subunit R1 and/or subunit R2.[21]
Class I RNR can be inhibited by peptides similar to the C-terminus of RNR2. These peptides can compete with RNR2 for binding to RNR1, and as a result RNR1 does not form an enzymatically active complex with RNR2.[29][30] Although the C-terminus of RNR2 proteins is different across species, RNR2 can interact with RNR1 across species.[31] When the mouse RNR2 C-terminus was replaced with the E. coli RNR2 C-terminal (7 or 33) amino acid residues, the chimeric RNR2 subunit still binds to mouse RNR1 subunits. However, they lack enzymatic activity due probably to the elimination of residues involved in the transfer of the free radical electron from the RNR2 to the RNR1 subunit.[30]
Small peptides can specifically inhibit the RNR2 subunits from binding with RNR1 when they share a significant similarity with the normal RNR2 C-terminus.[32] This inhibition RNR2 binding to RNR1 has been tested successfully in herpes simplex virus (HSV) RNR. When a 7 amino acid oligomer (GAVVNDL) truncated from the C-terminus of the RNR2 subunit was used in competition assays, it prevented the normal RNR2 from forming an enzymatically active complex with RNR1.[33] Other small peptide inhibitors similar to the RNR2 C-terminus have also been used successfully to inhibit HSV RNR enzymatic activity and thus HSV replication.[34] In mice models of stromalkeratitis and corneal neovascularization (HSVocular disease), a small RNR2 C-terminal analog BILD 1263 has been reported to inhibit RNR and is effective in preventing these diseases.[35] In some cases, although treatment with small C-terminal analogs may not stop disease spreading, they can still help in healing. In the acyclovir-resistant HSV (PAAr5), a small peptide inhibitor BILD 1633 has been reported to be 5 to 10 times more potent than BILD 1263 against cutaneous PAAr5 infection.[36] A combination therapy approach (BILD 1633 and acyclovir) is more effective to heal topical lesions in mice. These data suggest that small peptide inhibitors that compete with RNR2 for binding to RNR1 are useful in preventing the spread of HSV.
Gallium inhibits RNR2 by substituting for Fe3+ in the active site. Gallium maltolate is an orally bioavailable form of gallium that exploits this inhibitory activity to treat cancer, infections, and other diseases.[37]
^ abEklund H, Eriksson M, Uhlin U, Nordlund P, Logan D (August 1997). "Ribonucleotide reductase—structural studies of a radical enzyme". Biological Chemistry. 378 (8): 821–5. doi:10.1515/bchm.1997.378.8.815. PMID9377477.
^Stubbe J, Riggs-Gelasco P (November 1998). "Harnessing free radicals: formation and function of the tyrosyl radical in ribonucleotide reductase". Trends in Biochemical Sciences. 23 (11): 438–43. doi:10.1016/S0968-0004(98)01296-1. PMID9852763.
^ abPDB: 1PEU; Uppsten M, Färnegårdh M, Jordan A, Eliasson R, Eklund H, Uhlin U (June 2003). "Structure of the large subunit of class Ib ribonucleotide reductase from Salmonella typhimurium and its complexes with allosteric effectors". Journal of Molecular Biology. 330 (1): 87–97. doi:10.1016/S0022-2836(03)00538-2. PMID12818204.
^Nordlund P, Eklund H (July 1993). "Structure and function of the Escherichia coli ribonucleotide reductase protein R2". Journal of Molecular Biology. 232 (1): 123–64. doi:10.1006/jmbi.1993.1374. PMID8331655.
^Högbom M, Andersson ME, Nordlund P (March 2001). "Crystal structures of oxidized dinuclear manganese centres in Mn-substituted class I ribonucleotide reductase from Escherichia coli: carboxylate shifts with implications for O2 activation and radical generation". Journal of Biological Inorganic Chemistry. 6 (3): 315–23. doi:10.1007/s007750000205. PMID11315567. S2CID20748553.
^ abcdPham DQ, Blachuta BJ, Nichol H, Winzerling JJ (September 2002). "Ribonucleotide reductase subunits from the yellow fever mosquito, Aedes aegypti: cloning and expression". Insect Biochemistry and Molecular Biology. 32 (9): 1037–44. Bibcode:2002IBMB...32.1037P. doi:10.1016/S0965-1748(02)00041-3. PMID12213240.
^Meuth M (April 1989). "The molecular basis of mutations induced by deoxyribonucleoside triphosphate pool imbalances in mammalian cells". Experimental Cell Research. 181 (2): 305–16. doi:10.1016/0014-4827(89)90090-6. PMID2647496.
^Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, Aubert S, Chrétien D, de Lonlay P, Paquis-Flucklinger V, Arakawa H, Nakamura Y, Munnich A, Rötig A (June 2007). "Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion". Nature Genetics. 39 (6): 776–80. doi:10.1038/ng2040. PMID17486094. S2CID22103978.
^Cosentino G, Lavallée P, Rakhit S, Plante R, Gaudette Y, Lawetz C, Whitehead PW, Duceppe JS, Lépine-Frenette C, Dansereau N (January 1991). "Specific inhibition of ribonucleotide reductases by peptides corresponding to the C-terminal of their second subunit". Biochemistry and Cell Biology. 69 (1): 79–83. doi:10.1139/o91-011. PMID2043345.
^Cohen EA, Gaudreau P, Brazeau P, Langelier Y (1986). "Specific inhibition of herpesvirus ribonucleotide reductase by a nonapeptide derived from the carboxy terminus of subunit 2". Nature. 321 (6068): 441–3. Bibcode:1986Natur.321..441C. doi:10.1038/321441a0. PMID3012360. S2CID4238076.
Questa voce o sezione sugli argomenti Giappone e castelli non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti dei progetti di riferimento 1, 2. Castello di Osaka大坂城Il castello di OsakaUbicazioneStato Giappone CittàOsaka Coordinate34°41′14″N 135°31′33″E / 34.687222°N 135.525833°E34.687222; 135.52583...
Untuk kompetisi tahun ini, lihat Miss Grand International 2023. Miss Grand InternationalLogo Miss Grand InternationalSingkatanMGITanggal pendirian9 September 2013; 10 tahun lalu (2013-09-09)Didirikan diBangkok, ThailandTipeKontes kecantikanLokasiThailandWilayah layanan InternasionalPresidentIvan GunawanVice PresidentChesy MoseSlogan{{Plainlist| 'AJANG MIRAS Organisasi indukMiss Grand International Co., Ltd. (Miss Grand Organization)Situs webmissgrandinternational.com Miss Grand Internati...
Sadegh Mahsouli Menteri Kesejahteraan dan Keamanan SosialMasa jabatan19 November 2009 – 3 Agustus 2011PresidenMahmoud AhmadinejadPendahuluAbdolreza MesriPenggantiReza Sheykholeslam (Kooperatif, Buruh dan Kesejahteraan Sosial)Menteri Dalam NegeriMasa jabatan24 Desember 2008 – 9 Agustus 2009PresidenMahmoud AhmadinejadPendahuluKamran Daneshjoo (pelaksana tugas)PenggantiMostafa Mohammad Najjar Informasi pribadiLahir9 April 1959 (umur 65)Urmia, IranKebangsaanIranPartai p...
General Motors marque Cadillac V seriesProduct typePerformance engines and carsAutomotive sports accessoriesOwnerCadillacProduced byGeneral MotorsCountryU.S.Introduced2003; 21 years ago (2003) The Cadillac V series (stylized as V-Series) is a line of high-performance vehicles tuned by the General Motors Performance Division for the Cadillac division of General Motors. Models in the V series tend to vary from one generation to the other. It was introduced in 2003. The V ...
This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: James McClelland psychologist – news · newspapers · books · scholar · JSTOR (February 2013) (Learn how and when to remove this message) James...
Université JagellonneBlason de l'universitéHistoireFondation 1364StatutType Université publiqueNom officiel Uniwersytet JagiellońskiRégime linguistique PolonaisFondateur Casimir IIIRecteur Jacek Popiel (depuis 2020)Devise Plus ratio quam vis (« Plutôt convaincre que vaincre »)Membre de Réseau d'Utrecht, Groupe de Coimbra, EuropaeumSite web (pl + en + ru) www.uj.edu.plChiffres-clésÉtudiants 41 661 (2019)Effectif 7 246 (2019)LocalisationPa...
Bangladesh Girl Guides AssociationSeal of Bangladesh Girl Guides AssociationCountryBangladeshFounded1973Membership49,975AffiliationWorld Association of Girl Guides and Girl Scouts Scouting portal The Bangladesh Girl Guides Association (Bengali: বাংলাদেশ গার্ল গাইডস অ্যাসোসিয়েশন) is the national Guiding organization of Bangladesh. It serves 49,975 members (as of 2003). History Girlguiding in today's Bangladesh started in 1928...
Oblast Poltava Oblast di Ukraina Полтавська область (uk) flag of Poltava Oblast coat of arms of Poltava Oblast Tempat <mapframe>: Judul Ukraine/Poltava.map .map bukan merupakan halaman data peta yang sah Negara berdaulatUkraina NegaraUkraina Ibu kotaPoltava Pembagian administratifHadiach Raion Kremenchuk Raion Lokhvytsia Raion Hrebinka Raion Dykanka Raion Kobeliaky Raion Myrhorod Raion Chornukhy Raion Chutove Raion Shyshaky Raion Khorol Raion Reshetylivka Raion Semenivk...
Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...
Species of shark Australian spotted catshark Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Chondrichthyes Subclass: Elasmobranchii Subdivision: Selachimorpha Order: Carcharhiniformes Family: Scyliorhinidae Genus: Asymbolus Species: A. analis Binomial name Asymbolus analis(J. D. Ogilby, 1885) Sharks portal The Australian spotted catshark (Asymbolus analis) is a catshark of the family Scyl...
Overview of conservatism in the United Kingdom This article is part of a series onConservatismin the United Kingdom Ideologies British nationalism Cameronism Muscular liberalism Civic Compassionate Green Liberal Thatcherism Neo One-nation Powellism Progressive Toryism High Red Social Ultra Principles British unionism Classical liberalism Elitism Aristocracy Meritocracy Noblesse oblige Family values Imperialism Loyalism Moral absolutism Protectionism Royalism Social hierarchy Social market eco...
Australian sports clothing manufacturer Classic SportswearCompany typePrivately heldIndustrySports clothing manufacturerFounded1934; 90 years ago (1934)HeadquartersSydney, AustraliaArea servedOceaniaProductsAccessories, apparel, sportswearWebsiteOfficial website Classic Sportswear, also simply known as Classic, is an Australian sports clothing manufacturer. The company was founded in Sydney in 1934, making them one of the oldest family owned sports clothing companies in Aust...
Dalam nama Korean ini, nama keluarganya adalah Kang. Kang In-sooLahir10 Maret 1988 (umur 36)Suwon, Korea SelatanPekerjaan Singer actor Tahun aktif2011–sekarangKarier musikGenre Pop R&B dance Label H2 Media YM3D Virgin Artis terkaitMynameSitus webmyname-jp.com Nama KoreaHangul강인수 Alih AksaraGang In-suMcCune–ReischauerKang Insu Kang In-soo (Hangul: 강인수; lahir 10 Maret 1988) adalah aktor dan penyanyi asal Korea Selatan. Kehidupan dan karier 1988–2010: Keh...
Historic church in South Dakota, United States This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Emmanuel Episcopal Church Rapid City, South Dakota – news · newspapers · books · scholar · JSTOR (January 2018) (Learn how and when to remove this message) United States historic placeEmmanuel Episcopal Church...
Pierre Kardinal Giraud Pierre Giraud (11 Agustus 1791 – 17 April 1850) adalah seorang kardinal Gereja Katolik Roma asal Prancis. Ia ditahbiskan menjadi imam pada 23 September 1815. Pada 30 November 1930, ia ditahbiskan menjadi Uskup Rodez. Pada 24 Januari 1842, ia ditahbiskan menjadi Uskup Agung Cambrai. Pada 4 Oktober 1847, ia ditahbiskan menjadi Kardinal-Imam Santa Maria della Pace. Referensi Salvador Miranda. Florida International University, ed. [[:Templat:Pipetric...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) المسرح القومي السوري هو امتداد للمسرح السوري، والانتقال من مرحلة الهواة إلى مرحلة الاحتراف. مرحلة التأس�...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Scoutcraft – news · newspapers · books · scholar · JSTOR (March 2017) (Learn how and when to remove this message) Scoutcraft is a term used to cover a variety of woodcraft knowledge and skills required by people seeking to venture into wild country and sustain ...
2007 documentary film by Alex Gibney Taxi to the Dark SideTheatrical release posterDirected byAlex GibneyWritten byAlex GibneyProduced byAlex GibneyEva OrnerSusannah ShipmanEdited bySloane KlevinMusic byIvor GuestRobert LoganDistributed byTHINKFilmRelease date April 30, 2007 (2007-04-30) Running time106 minutesCountryUnited StatesLanguageEnglish Mugshot of taxi driver Dilawar at the Bagram prison where he died. Taxi to the Dark Side is a 2007 American documentary film directed ...
Assyrian New Year Kha b' NisanKha b' Nisan celebration in Nahla regionOfficial nameSyriac: ܚܕ ܒܢܝܣܢObserved byAssyrian peopleTypeCulturalSignificanceNew Year holidayDate1 AprilNext time1 April 2025 (2025-04-01)Related toAkitu, Seharane, Noruz Kha b-Nisan, Ha b-Nisin,[1] or Ha b-Nison (Syriac: ܚܕ ܒܢܝܣܢ, First of April), also known as Resha d-Sheta (Syriac: ܪܫܐ ܕܫܢܬܐ, Head of the year) and as Akitu (ܐܟܝܬܘ), or Assyrian New Year,[2]&...