Decomposable measure

In mathematics, a decomposable measure[1] (also known as a strictly localizable measure) is a measure that is a disjoint union of finite measures. This is a generalization of σ-finite measures, which are the same as those that are a disjoint union of countably many finite measures. There are several theorems in measure theory such as the Radon–Nikodym theorem that are not true for arbitrary measures but are true for σ-finite measures. Several such theorems remain true for the more general class of decomposable measures. This extra generality is not used much as most decomposable measures that occur in practice are σ-finite.

Examples

  • Counting measure on an uncountable measure space with all subsets measurable is a decomposable measure that is not σ-finite. Fubini's theorem and Tonelli's theorem hold for σ-finite measures but can fail for this measure.
  • Counting measure on an uncountable measure space with not all subsets measurable is generally not a decomposable measure.
  • The one-point space of measure infinity is not decomposable.

References

  1. ^ Fremlin 2016, Definition 211E, p. 12.

Bibliography

  • Hewitt, Edwin; Stromberg, Karl (1965), Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Graduate Texts in Mathematics, vol. 25, Berlin, Heidelberg, New York: Springer-Verlag, ISBN 978-0-387-90138-1, MR 0188387, Zbl 0137.03202
  • Fremlin, D.H. (2016). Measure Theory, Volume 2: Broad Foundations (Hardback ed.). Torres Fremlin. Second printing.

Read other articles:

 AG8  SP8  Stasiun LRT Plaza RakyatStasiun Angkutan cepat Rute Sentul Timur-Ampang dan Rute Sentul Timur-Sri PetalingLantai peron stasiun Plaza Rakyat.Koordinat3°8′40″N 101°42′5″E / 3.14444°N 101.70139°E / 3.14444; 101.70139PemilikSyarikat Prasarana Negara (2002 – kini); diurus oleh RapidKL.JalurRute Sentul Timur-Ampang dan Rute Sentul Timur-Sri Petaling (1996 – kini)Jumlah peron2 peron sisiJumlah jalur2SejarahDibuka16 Desember 1996O...

 

Zigot (sel)RincianHari0PendahuluGametBentuk lanjutanMorulaPengidentifikasiMeSHD015053TETemplat:TerminologiaEmbryologicaFMA72395Daftar istilah anatomi[sunting di Wikidata] Zigot (dari bahasa Yunani Kuno: ζυγωτός (zygōtós) 'bergabung, berpasangan', dari kata ζυγοῦν (zygoun) 'bergabung, berpasangan')[1] adalah sel yang terbentuk sebagai hasil bersatunya dua sel kelamin (sel ovum dan sel sperma) yang telah matang. Satu sel zigot yang merupakan sel eukariotik terbentuk ...

 

Canadian-American magician and skeptic (1928–2020) James RandiRandi c. early-to-mid 1990sBornRandall James Hamilton Zwinge(1928-08-07)August 7, 1928Toronto, Ontario, CanadaDiedOctober 20, 2020(2020-10-20) (aged 92)Plantation, Florida, U.S.Citizenship Canada United States OccupationsStage magicianscientific skepticauthorYears active1946−2016Spouse José Alvarez ​(m. 2013)​ Randi's voice Recorded October 2016 at CSICon Websiteweb.randi.orgSignature Jam...

Pharmaceutical drug Tinzaparin sodiumn = 1 to 25, R = H or SO3Na, R1 = H, SO3Na or COCH3, R2 = H and R3 = COONa or R2 = COONa and R3 = HClinical dataTrade namesinnohep(R)AHFS/Drugs.comMonographRoutes ofadministrationsubcutaneous (once daily)ATC codeB01AB10 (WHO) Legal statusLegal status US: WARNING[1] Pharmacokinetic dataBioavailability90% for Anti-Xa activity, 67% for Anti-IIa activity)[2]Metabolismminor metabolisation in liver by desulfation and/or depolymeriz...

 

FloraNama alternatifFlora: Turn OnGenre Drama Roman BerdasarkanKarakter Flora dalam Turn Onoleh Tiara WalesSutradaraAnnisa MeutiaPemeran Erika Carlina Mike Ethan Frederika Alexis Maria Theodore Fadly Faisal Lagu pembukaParty Everday oleh JakoLagu penutupParty Everday oleh JakoNegara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode8ProduksiProduser eksekutif Monika Rudijono Tina Arwin Anthony Buncio ProduserWicky V. OlindoSinematografiGuntur Arief SaputraPenyuntingDinda Amand...

 

Banning of an esports player Blitzchung, a pro-democracy player representing Hong Kong, in a tournament against another player, at the Google Play Booth B211, One World Trade Center, USA, January 28, 2019. In this photo, Blitzchung's opponent appears to be requesting assistance from a Blizzard employee during the match. This photo predates the Blitzchung controversy by about ten months. In October 2019, American video game developer Blizzard Entertainment punished Ng Wai Chung (吳偉聰) (kn...

NATO strategic-level military command SACT redirects here. For the educational institution in Kerala, see St. Aloysius College, Thrissur. Allied Command TransformationEmblemFounded19 June 2003Part ofNorth Atlantic Treaty Organization (NATO)HeadquartersNaval Support Activity Hampton RoadsNorfolk, Virginia (USA)Websitewww.act.nato.intCommandersCurrentcommanderGénéral Philippe Lavigne, French Air and Space ForceMilitary unit Allied Command Transformation (ACT) (French: Commandement allié...

 

Pour les articles homonymes, voir La Case de l'oncle Tom (homonymie). Cet article est une ébauche concernant un film américain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les conventions filmographiques. Affiche du film La Case de l'oncle Tom (Uncle Tom's Cabin) est un film muet américain réalisé par Harry A. Pollard en 1927. Ce film est une adaptation cinématographique du roman La Case de l'oncle Tom de Harriet Beecher Stowe. Synopsis L'Oncle Tom ...

 

For related races, see 1980 United States gubernatorial elections. 1980 North Carolina gubernatorial election ← 1976 November 4, 1980 1984 →   Nominee Jim Hunt I. Beverly Lake Party Democratic Republican Popular vote 1,143,145 691,449 Percentage 61.88% 37.43% County resultsHunt:      50-60%      60-70%      70-80%      80-90%Lake:      5...

2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 %   获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...

 

1396-1863 German principality Principality (Duchy) of Anhalt-DessauFürstentum (Herzogtum) Anhalt-Dessau (German)1396–15611603–1863 19th century flag of the Anhalt duchies 19th century coat of arms of the Anhalt duchies The Anhalt principalities, with Anhalt-Dessau in greenStatus State of the Holy Roman Empire (until 1806) State of the Confederation of the Rhine (1806–13) State of the German Confederation (from 1815) CapitalDessauGovernmentPrincipalityPrince • 1396–14...

 

Diacritical mark Not to be confused with overline or bar (diacritic). O macron, O-, and Ū redirect here. For the Greek letter, see omicron. For the o- prefix in Japanese, see Japanese honorifics. For the Indic vowel, see Ū (Indic). ◌̄MacronU+0304 ◌̄ COMBINING MACRONSee alsoU+0331 ◌̱ COMBINING MACRON BELOW A macron (/ˈmækrɒn, ˈmeɪ-/ MAK-ron, MAY-) is a diacritical mark: it is a straight bar ¯ placed above a letter, usually a vowel. Its name derives fro...

The Boy and the HeronLogoSutradaraHayao MiyazakiProduserToshio SuzukiDitulis olehHayao MiyazakiPemeran Soma Santoki Masaki Suda Aimyon Yoshino Kimura Shōhei Hino Ko Shibasaki Takuya Kimura Penata musikJoe HisaishiSinematograferAtsushi Okui[1]PerusahaanproduksiStudio GhibliDistributorTohoTanggal rilis 14 Juli 2023 (2023-07-14) (Jepang) 13 Desember 2023 (2023-12-13) (Indonesia) Durasi124 menitNegaraJepangBahasaJepangPendapatankotor¥7.414 miliar(US$50.6 juta) ...

 

Piermarco Cannarsa (Roma, 21 febbraio 1957) è un matematico italiano. I suoi interessi scientifici comprendono l'analisi funzionale, le equazioni alle derivate parziali e la teoria dei controlli. Insieme a Carlo Sinestrari ha scritto il primo testo che si è occupato sistematicamente ed esaurientemente delle funzioni semiconcave.[1] Indice 1 Biografia 1.1 Incarichi 2 Opere 3 Note 4 Collegamenti esterni Biografia Si è laureato in Matematica nel 1979 presso l'Università di Pisa essen...

 

1997 IAAF WorldIndoor ChampionshipsTrack events60 mmenwomen200 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen3000 mmenwomen60 m hurdlesmenwomen4 × 400 m relaymenwomenField eventsHigh jumpmenwomenPole vaultmenwomenLong jumpmenwomenTriple jumpmenwomenShot putmenwomenCombined eventsPentathlonwomenHeptathlonmenvte The women's 400 metres event at the 1997 IAAF World Indoor Championships was held on March 7–9. Medalists Gold Silver Bronze Jearl Miles Clark United States Sandie Richa...

22nd season of the UEFA club football tournament 1976–77 European CupStadio Olimpico in Rome hosted the final.Tournament detailsDates15 September 1976 – 25 May 1977Teams32Final positionsChampions Liverpool (1st title)Runners-up Borussia MönchengladbachTournament statisticsMatches played61Goals scored155 (2.54 per match)Attendance2,002,747 (32,832 per match)Top scorer(s)Franco Cucinotta (Zürich)Gerd Müller (Bayern Munich)5 goals each← 1975–76 1977–78 → Int...

 

محطات الأرقام محطات راديو ذات موجة قصيرة غير معروفة المصدر. غالبا ما يبث عليها صوت مولد صناعيا يقرأ سيلًا من الأرقام والكلمات والحروف (أحيانا باستخدام أبجدية التهجئة أبجدية لفظية), ونغمات أو شفرة مورس. هذه المحطات تبث بلغات عديدة وغالبية الأصوات المستخدمة نسائية، وأحيانً...

 

Conclave de 1903 Conclave de 1903O Papa Pio X, já como pontífice Data e localização De 31 de julho a 4 de agosto de 1903Roma, Vaticano Pessoas-chave Decano Luigi Oreglia di Santo Stefano Vice-Decano Serafino Vannutelli Camerlengo Luigi Oreglia di Santo Stefano Protopresbítero José Sebastião Neto, O.F.M. Protodiácono Luigi Macchi Secretário Rafael Merry del Val Eleição Eleito Papa Pio X(Giuseppe Sarto) Participantes 62 Ausentes 2 Escrutínios 7 Veto (Jus exclusivae) Do Arquiduque F...

Italian painter (1529–1566) Crocifissione, Cappella Mattei, Santa Maria della Consolazione, Rome (1556) Taddeo Zuccaro (or Zuccari) (1 September 1529 – 2 September 1566) was an Italian painter, one of the most popular members of the Roman mannerist school. Biography Zuccaro was born in Sant'Angelo in Vado, near Urbino, the son of Ottaviano Zuccaro, an almost unknown painter. His brother Federico, born around 1540, was also a painter and architect. As a young man Taddeo was to...

 

Pour les articles homonymes, voir Pacôme. Maria PacômeMaria Pacôme en 2008 avant une représentation.BiographieNaissance 18 juillet 192314e arrondissement de Paris (France)Décès 1er décembre 2018 (à 95 ans)Ballainvilliers (Essonne, France)Nom de naissance Simonne PacômePseudonyme Maria PacômeNationalité françaiseFormation Cours SimonActivités Actrice, dramaturgePériode d'activité 1956-2018Conjoint Maurice Ronet (de 1950 à 1956)Œuvres principales On m'appelle Émilie (198...