Copper hydride

Copper hydride
Names
IUPAC name
Copper hydride
Other names
Copper(I) hydride
Cuprous hydride
Hydridocopper(I)
Cuprane
poly[cuprane(1)]
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.229.864 Edit this at Wikidata
EC Number
  • 803-023-1
  • InChI=1S/Cu.H checkY
    Key: JJFLDSOAQUJVBF-UHFFFAOYSA-N checkY
  • [CuH]
Properties
CuH
Molar mass 64.554 g·mol−1
Melting point 100 °C (212 °F; 373 K)[1]
Hazards
GHS labelling:
GHS02: FlammableGHS07: Exclamation mark
Warning
H228, H315, H319, H335
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1 mg/m3 (as Cu)[2]
REL (Recommended)
TWA 1 mg/m3 (as Cu)[2]
IDLH (Immediate danger)
TWA 100 mg/m3 (as Cu)[2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Copper hydride is an inorganic compound with the chemical formula CuHn where n ~ 0.95.[3] It is a red solid, rarely isolated as a pure composition, that decomposes to the elements.[4] Copper hydride is mainly produced as a reducing agent in organic synthesis and as a precursor to various catalysts.[5]

History

In 1844, the French chemist Adolphe Wurtz synthesised copper hydride for the first time.[6] He reduced an aqueous solution of copper(II) sulfate with hypophosphorous acid (H3PO2). In 2011, Panitat Hasin and Yiying Wu were the first to synthesise a metal hydride (copper hydride) using the technique of sonication.[7] Copper hydride has the distinction of being the first metal hydride discovered. In 2013, it was established by Donnerer et al. that, at least up to fifty gigapascals, copper hydride cannot be synthesised by pressure alone. However, they were successful in synthesising several copper-hydrogen alloys under pressure.[5]

Chemical properties

Structure

Wurtzite structure

In copper hydride, elements adopt the Wurtzite crystal structure[8][9] (polymeric), being connected by covalent bonds.[1]

The CuH consists of a core of CuH with a shell of water and this may be largely replaced by ethanol. This offers the possibility of modifying the properties of CuH produced by aqueous routes.[10] While all methods for the synthesis of CuH result in the same bulk product, the synthetic path taken engenders differing surface properties. The different behaviors of CuH obtained by aqueous and nonaqueous routes can be ascribed to a combination of very different particle size and dissimilar surface termination, namely, bonded hydroxyls for the aqueous routes and a coordinated donor for the nonaqueous routes.[11]

Chemical reactions

CuH generally behaves as a source of H. For instance, Wurtz reported the double displacement reaction of CuH with hydrochloric acid:[12]

CuH + HCl → CuCl +H
2

When not cooled below −5 °C (23 °F), copper hydride decomposes, to produce hydrogen gas and a mixture containing elemental copper:

2 CuH → xCu•(2-x)CuH + ½x H
2
(0 < x < 2)

Solid copper hydride is the irreversible autopolymerisation product of the molecular form, and the molecular form cannot be isolated in concentration.

Production

Copper does not react with hydrogen even on heating,[13] thus copper hydrides are made indirectly from copper(I) and copper(II) precursors. Examples include the reduction of copper(II) sulfate with sodium hypophosphite in the presence of sulfuric acid,[1] or more simply with just hypophosphorous acid.[14] Other reducing agents, including classical aluminium hydrides can be used.[15]

4 Cu2+ + 6 H3PO2 + 6 H2O → 4 CuH + 6 H3PO3 + 8 H+

The reactions produce a red-colored precipitate of CuH, which is generally impure and slowly decomposes to liberate hydrogen, even at 0 °C.[14]

2 CuH → 2 Cu + H2

This slow decomposition also takes place underwater,[16] however there are reports of the material becoming pyrophoric if dried.[17]

A new synthesis method has been published in 2017 by Lousada et al.[18] In this synthesis high purity CuH nanoparticles have been obtained from basic copper carbonate, CuCO3·Cu(OH)2.[18] This method is faster and has a higher chemical yield than the copper sulfate based synthesis and produces nanoparticles of CuH with higher purity and a smaller size distribution. The obtained CuH can easily be converted to conducting thin films of Cu. These films are obtained by spraying the CuH nanoparticles in their synthesis medium into some insulating support. After drying, conducting Cu films protected by a layer of mixed copper oxides are spontaneously formed.

Reductive sonication

Copper hydride is also produced by reductive sonication. In this process, hexaaquacopper(II) and hydrogen(•) react to produce copper hydride and oxonium according to the equation:

[Cu(H2O)6]2+ + 3 H1/n (CuH)n + 2 [H3O]+ + 4 H2O

Hydrogen(•) is obtained in situ from the homolytic sonication of water. Reductive sonication produces molecular copper hydride as an intermediate.[7]

Applications in Organic Synthesis

Structure of [(Ph3P)CuH]6.

Phosphine- and NHC-copper hydride species have been developed as reagents in organic synthesis, albeit of limited use.[19] Most widely used is [(Ph3P)CuH]6 (Stryker's reagent) for the reduction of α,β-unsaturated carbonyl compounds.[20] H2 (at least 80 psi) and hydrosilanes can be used as the terminal reductant, allowing a catalytic amount of [(Ph3P)CuH]6 to be used for conjugate reduction reactions.[21][22]

Chiral phosphine-copper complexes catalyze hydrosilation of ketones and esters with low enantioselectivities.[23] An enantioselective (80 to 92% ee) reduction of prochiral α,β-unsaturated esters uses Tol-BINAP complexes of copper in the presence of PMHS as the reductant.[24] Subsequently, conditions have been developed for the CuH-catalyzed hydrosilylation of ketones[25] and imines[26] proceeding with excellent levels of chemo- and enantioselectivity.

The reactivity of LnCuH species with weakly activated (e.g. styrenes, dienes) and unactivated alkenes (e.g. α-olefins) and alkynes has been recognized[27] and has served as the basis for several copper-catalyzed formal hydrofunctionalization reactions.[28][29][30]

"Hydridocopper"

The diatomic species CuH is a gas that has attracted the attention of spectroscopists. It polymerises upon being condensed. A well-known oligomer is octahedro-hexacuprane(6), occurring in Stryker's reagent. Hydridocopper has acidic behavior for the same reason as normal copper hydride. However, it does not form stable aqueous solutions, due in part to its autopolymerisation, and its tendency to be oxidised by water. Copper hydride reversibly precipitates from pyridine solution, as an amorphous solid. However, repeated dissolution affords the regular crystalline form, which is insoluble. Under standard conditions, molecular copper hydride autopolymerises to form the crystalline form, including under aqueous conditions, hence the aqueous production method devised by Wurtz.

Production

Molecular copper hydride can be formed by reducing copper iodide with lithium aluminium hydride in ether and pyridine.[31] 4CuI + LiAlH4 CuH + LiI + AlI3 This was discovered by E Wiberg and W Henle in 1952.[32] The solution of this CuH in the pyridine is typically dark red to dark orange.[31] A precipitate is formed if ether is added to this solution.[31] This will redissolve in pyridine. Impurities of the reaction products remain in the product.[31] In this study, it was found that the solidified diatomic substance is distinct from the Wurtzite structure. The Wurtzite substance was insoluble and was decomposed by lithium iodide, but not the solidified diatomic species. Moreover, while the Wurtzite substance's decomposition is strongly base catalysed, whereas the solidified diatomic species is not strongly affected at all. Dilts distinguishes between the two copper hydrides as the 'insoluble-' and 'soluble copper hydrides'. The soluble hydride is susceptible to pyrolysis under vacuum and proceeds to completion under 100 °C.

Amorphous copper hydride is also produced by anhydrous reduction. In this process copper(I) and tetrahydroaluminate react to produce molecular copper hydride and triiodoaluminium adducts. The molecular copper hydride is precipitated into amorphous copper hydride with the addition of diethyl ether. Amorphous copper hydride is converted into the Wurtz phase by annealing, accompanied by some decomposition.[31]

History

Hydridocopper was discovered in the vibration-rotation emission of a hollow-cathode lamp in 2000 by Bernath, who detected it at the University of Waterloo. It was first detected as a contaminant while attempting to generate NeH+ using the hollow-cathode lamp.[33][34] Molecular copper hydride has the distinction of being the first metal hydride to be detected in this way. (1,0) (2,0) and (2,1) vibrational bands were observed along with line splitting due to the presence of two copper isotopes, 63Cu and 65Cu.[35][36]

The A1Σ+-X1Σ+ absorption lines from CuH have been claimed to have been observed in sunspots and in the star 19 Piscium.[37][38]

In vapour experiments, it was found that copper hydride is produced from the elements upon exposure to 310 nanometre radiation.[4]

Cu + H2 ↔ CuH + H

However, this proved to be unviable as a production method as the reaction is difficult to control. The activation barrier for the reverse reaction is virtually non-existent, which allows it to readily proceed even at 20 Kelvin.

Other copper hydrides

  • A binary dihydride (CuH
    2
    ) also exists, in the form of an unstable reactive intermediate in the reduction of copper hydride by atomic hydrogen.

References

  1. ^ a b c Fitzsimons, Nuala P.; Jones, William; Herley, Patrick J. (1 January 1995). "Studies of copper hydride. Part 1.—Synthesis and solid-state stability". Journal of the Chemical Society, Faraday Transactions. 91 (4): 713–718. doi:10.1039/FT9959100713.
  2. ^ a b c NIOSH Pocket Guide to Chemical Hazards. "#0150". National Institute for Occupational Safety and Health (NIOSH).
  3. ^ Jordan, Abraham J.; Lalic, Gojko; Sadighi, Joseph P. (2016-07-25). "Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity". Chemical Reviews. 116 (15): 8318–8372. doi:10.1021/acs.chemrev.6b00366. ISSN 0009-2665. PMID 27454444.
  4. ^ a b Aldridge, Simon; Downs, Anthony J. (2001). "Hydrides of the Main-Group Metals: New Variations on an Old Theme". Chem. Rev. 101 (11): 3305–3366. doi:10.1021/cr960151d. PMID 11840988.
  5. ^ a b Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene (4 April 2013). "High-pressure synthesis of noble metal hydrides". The Journal of Chemical Physics. 138 (13): 134507. Bibcode:2013JChPh.138m4507D. doi:10.1063/1.4798640. PMID 23574244. Archived from the original on 24 June 2013. Retrieved 20 June 2013.
  6. ^ Wurtz, A. (1844) "Sur l'hydrure de cuivre" (On copper hydride), Comptes rendus, 18 : 702–704.
  7. ^ a b Hasin, Panitat; Wu, Yiying (1 January 2012). "Sonochemical synthesis of copper hydride (CuH)". Chemical Communications. 48 (9): 1302–1304. doi:10.1039/C2CC15741A. PMID 22179137.
  8. ^ Goedkoop, J. A.; Andresen, A. F. (1955). "The crystal structure of copper hydride". Acta Crystallographica. 8 (2): 118–119. doi:10.1107/S0365110X55000480.
  9. ^ Müller, Heinz; Bradley, Albert James (1926). "CCXVII.—Copper hydride and its crystal structure". Journal of the Chemical Society (Resumed). 129: 1669–1673. doi:10.1039/JR9262901669.
  10. ^ Bennett, Elliot L; Thomas Wilson; Patrick J Murphy; Keith Refson; Alex C Hannon; Silvia Imberti; Samantha K Callear; Gregory A Chass; Stewart F Parker (2015). "Structure and spectroscopy of CuH prepared via borohydride reduction". Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 71 (6): 608–612. doi:10.1107/S2052520615015176. PMC 4669994. PMID 26634717.
  11. ^ Bennett, Elliot L; Thomas Wilson; Patrick J Murphy; Keith Refson; Alex C Hannon; Silvia Imberti; Samantha K Callear; Gregory A Chass; Stewart F Parker (2015). "How the Surface Structure Determines the Properties of CuH". Inorganic Chemistry. 54 (5): 2213–2220. doi:10.1021/ic5027009. PMID 25671787.
  12. ^ Rocke, Alan J. (2001). Nationalizing Science: Adolphe Wurtz and the Battle for French Chemistry. Cambridge, MA: MIT Press. pp. 121–122. ISBN 978-0-262-26429-7.
  13. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  14. ^ a b Burtovyy, R.; Utzig, E.; Tkacz, M. (2000). "Studies of the thermal decomposition of copper hydride". Thermochimica Acta. 363 (1–2): 157–163. doi:10.1016/S0040-6031(00)00594-3.
  15. ^ Brauer, Georg (1963). Handbook of Preparative Inorganic Chemistry. Vol. 2 (2nd ed.). New York: Academic Press. p. 1004. ISBN 978-0-323-16129-9.
  16. ^ Warf, James C.; Feitknecht, W. (1950). "Zur Kenntnis des Kupferhydrids, insbesondere der Kinetik des Zerfalls". Helvetica Chimica Acta. 33 (3): 613–639. doi:10.1002/hlca.19500330327.
  17. ^ Goedkoop, J. A.; Andresen, A. F. (1955). "The crystal structure of copper hydride". Acta Crystallogr. 8 (2): 118–119. doi:10.1107/S0365110X55000480.
  18. ^ a b Lousada, Cláudio M.; Fernandes, Ricardo M. F.; Tarakina, Nadezda V.; Soroka, Inna L. (2017). "Synthesis of copper hydride (CuH) from CuCO3·Cu(OH)2 – a path to electrically conductive thin films of Cu". Dalton Transactions. 46 (20): 6533–6543. doi:10.1039/C7DT00511C. ISSN 1477-9226. PMID 28379275.
  19. ^ Whitesides, George M.; San Filippo, Joseph; Stredronsky, Erwin R.; Casey, Charles P. (1969-11-01). "Reaction of copper(I) hydride with organocopper(I) compounds". Journal of the American Chemical Society. 91 (23): 6542–6544. doi:10.1021/ja01051a093. ISSN 0002-7863.
  20. ^ John F. Daeuble and Jeffrey M. Stryker "Hexa-μ-hydrohexakis(triphenylphosphine)hexacopper" eEROS Encyclopedia of Reagents for Organic Synthesis, 2001. doi:10.1002/047084289X.rh011m
  21. ^ Mahoney, Wayne S.; Stryker, Jeffrey M. (1989-11-01). "Hydride-mediated homogeneous catalysis. Catalytic reduction of .alpha.,.beta.-unsaturated ketones using [(Ph3P)CuH]6 and H2". Journal of the American Chemical Society. 111 (24): 8818–8823. doi:10.1021/ja00206a008. ISSN 0002-7863.
  22. ^ Mori, Atsunori; Fujita, Akinori (1997-01-01). "Copper(I) salt mediated 1,4-reduction of α,β-unsaturated ketones using hydrosilanes" (PDF). Chemical Communications (22): 2159–2160. doi:10.1039/a706032g. ISSN 1364-548X. Archived from the original (PDF) on 2022-05-14. Retrieved 2019-12-19.
  23. ^ Brunner, Henri; Miehling, Wolfgang (1984-10-23). "Asymmetrische katalysen". Journal of Organometallic Chemistry. 275 (2): c17–c21. doi:10.1016/0022-328X(84)85066-4.
  24. ^ Appella, Daniel H.; Moritani, Yasunori; Shintani, Ryo; Ferreira, Eric M.; Buchwald, Stephen L. (1999-10-01). "Asymmetric Conjugate Reduction of α,β-Unsaturated Esters Using a Chiral Phosphine−Copper Catalyst". Journal of the American Chemical Society. 121 (40): 9473–9474. doi:10.1021/ja992366l. ISSN 0002-7863.
  25. ^ Lipshutz, Bruce H.; Noson, Kevin; Chrisman, Will; Lower, Asher (2003-07-01). "Asymmetric Hydrosilylation of Aryl Ketones Catalyzed by Copper Hydride Complexed by Nonracemic Biphenyl Bis-phosphine Ligands". Journal of the American Chemical Society. 125 (29): 8779–8789. doi:10.1021/ja021391f. ISSN 0002-7863. PMID 12862472.
  26. ^ Lipshutz, Bruce H.; Shimizu, Hideo (2004-04-19). "Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures". Angewandte Chemie International Edition. 43 (17): 2228–2230. doi:10.1002/anie.200353294. ISSN 1521-3773. PMID 15108129.
  27. ^ Noh, Dongwan; Chea, Heesung; Ju, Junghwan; Yun, Jaesook (2009-08-03). "Highly Regio- and Enantioselective Copper-Catalyzed Hydroboration of Styrenes". Angewandte Chemie International Edition. 48 (33): 6062–6064. doi:10.1002/anie.200902015. ISSN 1521-3773. PMID 19591178.
  28. ^ Miki, Yuya; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro (2013-10-04). "Copper-Catalyzed Intermolecular Regioselective Hydroamination of Styrenes with Polymethylhydrosiloxane and Hydroxylamines". Angewandte Chemie International Edition. 52 (41): 10830–10834. doi:10.1002/anie.201304365. ISSN 1521-3773. PMID 24038866.
  29. ^ Zhu, Shaolin; Niljianskul, Nootaree; Buchwald, Stephen L. (2013-10-23). "Enantio- and Regioselective CuH-Catalyzed Hydroamination of Alkenes". Journal of the American Chemical Society. 135 (42): 15746–15749. doi:10.1021/ja4092819. ISSN 0002-7863. PMC 3874865. PMID 24106781.
  30. ^ Uehling, Mycah R.; Rucker, Richard P.; Lalic, Gojko (2014-06-18). "Catalytic Anti-Markovnikov Hydrobromination of Alkynes". Journal of the American Chemical Society. 136 (24): 8799–8803. doi:10.1021/ja503944n. ISSN 0002-7863. PMID 24896663.
  31. ^ a b c d e Dilts, J. A.; D. F. Shriver (1968). "Nature of soluble copper(I) hydride". Journal of the American Chemical Society. 90 (21): 5769–5772. doi:10.1021/ja01023a020. ISSN 0002-7863.
  32. ^ E Wiberg & W Henle (1952). "Über die Dämpfung der elektromagnetischen Eigenschwingungen des Systems Erde — Luft — Ionosphäre". Zeitschrift für Naturforschung A. 7 (3–4): 250. Bibcode:1952ZNatA...7..250S. doi:10.1515/zna-1952-3-404.
  33. ^ Bernath, P. F. (2000). "6 Infrared emission spectroscopy" (PDF). Annual Reports on the Progress of Chemistry, Section C. 96 (1): 202. doi:10.1039/B001200I. ISSN 0260-1826. Archived from the original (PDF) on 2015-04-02. Retrieved 2013-02-23.
  34. ^ Ram, R.S.; P.F. Bernath; J.W. Brault (1985). "Fourier transform emission spectroscopy of NeH+". Journal of Molecular Spectroscopy. 113 (2): 451–457. Bibcode:1985JMoSp.113..451R. doi:10.1016/0022-2852(85)90281-4. ISSN 0022-2852.
  35. ^ Ram, R. S.; P.F. Bernath; J.W. Brault (1985). Cameron, David G; Grasselli, Jeannette G (eds.). "Infrared Fourier Transform Emission Spectroscopy of CuH and NeH+". Proc. SPIE. Fourier and Computerized Infrared Spectroscopy. 553: 774–775. Bibcode:1985SPIE..553..374R. doi:10.1117/12.970862. S2CID 93779370.
  36. ^ Seto, Jenning Y.; Zulfikar Morbi; Frank Charron; Sang K. Lee; Peter F. Bernath; Robert J. Le Roy (1999). "Vibration-rotation emission spectra and combined isotopomer analyses for the coinage metal hydrides: CuH & CuD, AgH & AgD, and AuH & AuD". The Journal of Chemical Physics. 110 (24): 11756. Bibcode:1999JChPh.11011756S. doi:10.1063/1.479120. ISSN 0021-9606. S2CID 43929297.
  37. ^ Wojslaw, Robert S.; Benjamin F. Peery (May 1976). "Identification of Novel Molecules in the Spectrum of 19 Piscium". The Astrophysical Journal Supplement. 31: 75–92. Bibcode:1976ApJS...31...75W. doi:10.1086/190375.
  38. ^ Fernando, W. T. M. L.; L. C. O'Brien; P. F. Bernath (1990). "Fourier Transform Emission Spectroscopy of the A1Σ+-X1Σ+ Transition of CuD" (PDF). Journal of Molecular Spectroscopy. 139 (2): 461–464. Bibcode:1990JMoSp.139..461F. doi:10.1016/0022-2852(90)90084-4. ISSN 0022-2852. Archived from the original (PDF) on 2005-03-10. Retrieved 2013-02-20.

Read other articles:

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Balap sepeda motor – berita · surat kabar · buku · cendekiawan · JSTOR Pembalap sepeda motor Balap sepeda motor adalah olahraga otomotif yang menggunakan sepeda motor. Balap sepeda motor, khususnya balap...

 

 

NGC 2070 di konstelasi Dorado. NGC 2070, juga dikenal sebagai Caldwell 103, adalah gugus terbuka yang sangat besar dan kemungkinan Gugus Super Bintang di Awan Magellan Besar, yang berada di dalam Nebula Tarantula, dan bertanggung jawab atas R136, dan sumber energi dan kecerahan terbesarnya, dengan ribuan bintang masifnya itu adalah wilayah awan yang kaya, yang mencakup R136a1. NGC 2070 terletak di konatelasi Dorado. NGC 2070 adalah gugus bintang muda raksasa berada di pusat nebula, hanya beru...

 

 

VincenzoPoster promosiHangul빈센조 GenreDrama kejahatan Komedi hitamPembuatStudio Dragon tvNDitulis olehPark Jae-bumSutradaraKim Hee-wonPemeran Song Joong-ki Jeon Yeo-been Ok Taec-yeon Kim Yeo-jin Kwak Dong-yeon Jo Han-cul Negara asalKorea SelatanBahasa asliKorea ItaliaJmlh. episode20 + 1 spesialProduksiProduser eksekutifLee Jang-soo Jang Sae-jung[a]Rumah produksiLogos FilmDistributortvN NetflixAnggaran₩20 miliar[1](~US$18 juta)Rilis asliJaringantvNRilis20 Februari ...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2018年3月17日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:羅生門 (電影) — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 �...

 

 

Logo tvOne sejak 14 Februari 2023 Halaman ini memuat daftar acara yang ditayangkan tvOne. Acara saat ini NewsOne Kabar tvOne Breaking News tvOne Kabar Pagi (Setiap hari pkl 04.30 WIB) Kabar Arena (Setiap hari pkl 06.00 WIB dan Senin-Jumat pkl 23.30 WIB) Kabar Siang (Senin-Jumat pkl 11.00 WIB dan Sabtu-Minggu pkl 11.30 WIB) Kabar Pemilu (Senin-Jumat pkl 14.30 WIB) (ditayangkan selama Pemilu 2024) Ragam Perkara (Senin-Jumat pkl 10.30 WIB di siang hari dan Setiap Hari pkl 15.30 WIB di sore hari)...

 

 

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: 10th term Sejm and 11th term Senate of Poland – news · newspapers · books · scholar · JSTOR (November 2023) (Learn how and when to remove this template message) Legislature of the Republic of Poland 10th term Sejm & 11th term Senate of the Republic of Poland ←9th term Sejm and 10th term Senate 11...

Mountain push in Afghanistan The Anjuman Pass (Persian: كتل انجمن Kotal-e Anjoman) (also written Anjoman Pass) (4,430 m) is a mountain pass in the Hindu Kush in Afghanistan. It connects the Panjshir Valley and beyond in the south-west with Badakhshan province and beyond to the north-east, which is the most north-easterly province of Afghanistan.[1][2][3] The Anjuman Pass is located on Panjshir Province's border with Badakhshan and Takhar province. The climate i...

 

 

Part of a series onSocialism HistoryOutline Development Age of the Enlightenment French Revolution Revolutions of 1848 Socialist calculation debate Socialist economics Ideas Calculation in kind Collective ownership Cooperative Common ownership Critique of political economy Economic democracy Economic planning Equal liberty Equal opportunity Free association Freed market Industrial democracy Input–output model Internationalism Labor-time calculation Labour voucher Material balance planning P...

 

 

Batman & Robin: Music from and Inspired by the Batman & Robin Motion PictureSoundtrack album by various artistsReleasedJune 10, 1997[1]RecordedSeptember 1996–March 1997Genre Alternative rock pop rock R&B hip hop electronica techno Length67:06LabelWarner Bros.Batman soundtracks chronology Batman Forever (score)(1995) Batman & Robin: Music from and Inspired by the Batman & Robin Motion Picture(1997) Batman Begins(2005) Singles from Batman & Robin The End Is...

American country musician This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2024) (Learn how and when to remove this message) Skinny DennisBackground informationBirth nameDennis SanchezBorn(1946-09-03)September 3, 1946DiedMarch 20, 1975(1975-03-20) (aged 28)Sunset Beach, California, United StatesGenresCountryFolkInstrument(s)Double bassYears active...

 

 

American baseball player Baseball player Jake KalishKalish with the Omaha Storm Chasers in 2017Uni-President Lions – No. 27PitcherBorn: (1991-07-09) July 9, 1991 (age 32)Red Bank, New JerseyBats: SwitchThrows: Left Jacob Louis Kalish (born July 9, 1991) is an American professional baseball pitcher for the Uni-President Lions for the Chinese Professional Baseball League (CPBL). He was picked by the Royals in the 32nd round of the 2015 Major League Baseball Draft. In 2016 Kalish was an M...

 

 

1964 studio album by Liza MinnelliLiza! Liza!Studio album by Liza MinnelliReleasedOctober 12, 1964RecordedJune 1964StudioCapitol, New York CityGenrePop, vocal, traditionalLabelCapitolProducerSimon RadyLiza Minnelli chronology Liza! Liza!(1964) It Amazes Me(1965) Liza! Liza! is the debut studio album by American singer Liza Minnelli. It was released on October 12, 1964, by Capitol Records. The album contains her interpretations of twelve pop standards. It was recorded in June 1964 at C...

American rock and roll pioneer (1938–1960) Eddie CochranCochran in 1957Background informationBirth nameRay Edward CochranBorn(1938-10-03)October 3, 1938Albert Lea, Minnesota, U.S.DiedApril 17, 1960(1960-04-17) (aged 21)Bath, Somerset, EnglandGenres Rock and roll rockabilly country rhythm and blues Occupation(s)MusiciansongwriterInstrument(s) Guitar piano bass drums vocals Years active1950–1960Labels Ekko Crest Liberty London Musical artist Ray Edward Cochran (/ˈkɒkrən/ KOK-rən; O...

 

 

This article is about the local government area. For other uses, see Barossa (disambiguation). Local government area in South AustraliaBarossa District CouncilSouth AustraliaThe location of the Barossa Council in bluePopulation25,066 (LGA 2021)[1] • Density27,48/km2 (7,120/sq mi)Established1996Area912 km2 (352.1 sq mi)MayorMichael Bim Lange [2]Council seatNuriootpaRegionBarossa Light and Lower North[3]State electorate(s)SchubertFederal ...

 

 

Surface-mount packaging that uses an array of solder balls This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ball grid array – news · newspapers · books · scholar · JSTOR (September 2010) (Learn how and when to remove this message) A grid array of solder balls on a printed circuit board after removal of an int...

Questa voce sull'argomento cestisti finlandesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Veikko VainioNazionalità Finlandia Altezza205 cm Peso100 kg Pallacanestro RuoloCentro Termine carriera1974 CarrieraGiovanili 1967-1971 BYU Cougars Squadre di club 1964-1967 KTP-Basket1971-1974 Pantterit Nazionale 1965-1973 Finlandia68 (414) Il simbolo → indica un trasferimento in presti...

 

 

Model of human interaction proposed in 1968 Drama triangle proposed by the psychiatrist Stephen B. Karpman The Karpman drama triangle is a social model of human interaction proposed by San Francisco psychiatrist Stephen B. Karpman in 1968. The triangle maps a type of destructive interaction that can occur among people in conflict.[1] The drama triangle model is a tool used in psychotherapy, specifically transactional analysis. The triangle of actors in the drama are persecutors, victi...

 

 

For the headland located in Newfoundland, see Cape Ray. For the town, see Cape Ray, Newfoundland and Labrador. MV Cape Ray (T-AKR-9679) in 2014 History United States NameCape Ray OwnerMaritime Administration (MARAD)[1] BuilderKawasaki Heavy Industries Ltd., Japan[1][2] Acquired17 Dec 1994[2] Identification IMO number: 7530810 MMSI number: 366841000 Callsign: KAFI General characteristics Class and typeMV Cape Rise (T-AKR-9678) Displacement32,054 t...

Conscription1780 caricature of a press gang Related concepts Alternative civilian serviceCivil conscriptionConscientious objectorConscription crisisCounter-recruitmentDraft-card burningDraft evasionImpressmentLevée en masseMilitary serviceNational servicePenal military unitWar resister By historical country Ottoman EmpireRussian EmpireSoviet Union By modern country ArgentinaAustraliaAzerbaijanBermudaBrazilCanadaChinaCongo-Kinshasa (child soldiers)CubaCyprus (reduction)DenmarkEgyptEritreaFinl...

 

 

Aircraft wing configuration with bend at root For other uses, see Gull-wing. DFS Habicht glider showing gull wing profile. Laughing gull showing the wing shape emulated in gull wing aircraft. The gull wing, also known as Polish wing or Puławski wing, is an aircraft wing configuration with a prominent bend in the wing inner section towards the wing root. Its name is derived from the seabirds which it resembles and from the Polish aircraft designer Zygmunt Puławski who started using this desi...