Combinatorial explosion

In mathematics, a combinatorial explosion is the rapid growth of the complexity of a problem due to the way its combinatorics depends on input, constraints and bounds. Combinatorial explosion is sometimes used to justify the intractability of certain problems.[1][2] Examples of such problems include certain mathematical functions, the analysis of some puzzles and games, and some pathological examples which can be modelled as the Ackermann function.

Examples

Latin squares

A Latin square of order n is an n × n array with entries from a set of n elements with the property that each element of the set occurs exactly once in each row and each column of the array. An example of a Latin square of order three is given by,

1 2 3
2 3 1
3 1 2

A common example of a Latin square would be a completed Sudoku puzzle.[3] A Latin square is a combinatorial object (as opposed to an algebraic object) since only the arrangement of entries matters and not what the entries actually are. The number of Latin squares as a function of the order (independent of the set from which the entries are drawn) (sequence A002860 in the OEIS) provides an example of combinatorial explosion as illustrated by the following table.

n The number of Latin squares of order n
1 1
2 2
3 12
4 576
5 161,280
6 812,851,200
7 61,479,419,904,000
8 108,776,032,459,082,956,800
9 5,524,751,496,156,892,842,531,225,600
10 9,982,437,658,213,039,871,725,064,756,920,320,000
11 776,966,836,171,770,144,107,444,346,734,230,682,311,065,600,000

Sudoku

A combinatorial explosion can also occur in some puzzles played on a grid, such as Sudoku.[2] A Sudoku is a type of Latin square with the additional property that each element occurs exactly once in sub-sections of size n × n (called boxes). Combinatorial explosion occurs as n increases, creating limits to the properties of Sudokus that can be constructed, analyzed, and solved, as illustrated in the following table.

n The number of Sudoku grids of order n
(boxes are sizen×n)
The number of Latin squares of order n
(for comparison)
1 1  1
4 288 [4] 576
9 6,670,903,752,021,072,936,960 [4][5] 5,524,751,496,156,892,842,531,225,600
(n = 9 is the commonly played 9 × 9 Sudoku. The puzzle does not include grids where n is irrational.)

Games

One example in a game where combinatorial complexity leads to a solvability limit is in solving chess (a game with 64 squares and 32 pieces). Chess is not a solved game. In 2005 all chess game endings with six pieces or fewer were solved, showing the result of each position if played perfectly. It took ten more years to complete the tablebase with one more chess piece added, thus completing a 7-piece tablebase. Adding one more piece to a chess ending (thus making an 8-piece tablebase) is considered intractable due to the added combinatorial complexity.[6][7]

Furthermore, the prospect of solving larger chess-like games becomes more difficult as the board-size is increased, such as in large chess variants, and infinite chess.[8]

Computing

Combinatorial explosion can occur in computing environments in a way analogous to communications and multi-dimensional space. Imagine a simple system with only one variable, a boolean called A. The system has two possible states, A = true or A = false. Adding another boolean variable B will give the system four possible states, A = true and B = true, A = true and B = false, A = false and B = true, A = false and B = false. A system with n booleans has 2n possible states, while a system of n variables each with Z allowed values (rather than just the 2 (true and false) of booleans) will have Zn possible states.

The possible states can be thought of as the leaf nodes of a tree of height n, where each node has Z children. This rapid increase of leaf nodes can be useful in areas like searching, since many results can be accessed without having to descend very far. It can also be a hindrance when manipulating such structures.

A class hierarchy in an object-oriented language can be thought of as a tree, with different types of object inheriting from their parents. If different classes need to be combined, such as in a comparison (like A < B) then the number of possible combinations which may occur explodes. If each type of comparison needs to be programmed then this soon becomes intractable for even small numbers of classes. Multiple inheritance can solve this, by allowing subclasses to have multiple parents, and thus a few parent classes can be considered rather than every child, without disrupting any existing hierarchy.

An example is a taxonomy where different vegetables inherit from their ancestor species. Attempting to compare the tastiness of each vegetable with the others becomes intractable since the hierarchy only contains information about genetics and makes no mention of tastiness. However, instead of having to write comparisons for carrot/carrot, carrot/potato, carrot/sprout, potato/potato, potato/sprout, sprout/sprout, they can all multiply inherit from a separate class of tasty whilst keeping their current ancestor-based hierarchy, then all of the above can be implemented with only a tasty/tasty comparison.

Arithmetic

Suppose we take the factorial of n:

Then 1! = 1, 2! = 2, 3! = 6, and 4! = 24. However, we quickly get to extremely large numbers, even for relatively small n. For example, 100! ≈ 9.33262154×10157, a number so large that it cannot be displayed on most calculators, and vastly larger than the estimated number of fundamental particles in the observable universe.[9]

Communication

Using separate lines of communication, four organizations require six channels
Using an intermediary, only one channel per organization is required

In administration and computing, a combinatorial explosion is the rapidly accelerating increase in communication lines as organizations are added in a process. (This growth is often casually described as "exponential" but is actually polynomial.)

If two organizations need to communicate about a particular topic, it may be easiest to communicate directly in an ad hoc manner—only one channel of communication is required. However, if a third organization is added, three separate channels are required. Adding a fourth organization requires six channels; five, ten; six, fifteen; etc.

In general, it will take communication lines for n organizations, which is just the number of 2-combinations of n elements (see also Binomial coefficient).[10]

The alternative approach is to realize when this communication will not be a one-off requirement, and produce a generic or intermediate way of passing information. The drawback is that this requires more work for the first pair, since each must convert its internal approach to the common one, rather than the superficially easier approach of just understanding the other.

See also

References

  1. ^ Krippendorff, Klaus. "Combinatorial Explosion". Web Dictionary of Cybernetics and Systems. PRINCIPIA CYBERNETICA WEB. Archived from the original on 6 August 2010. Retrieved 29 November 2010.
  2. ^ a b http://intelligence.worldofcomputing/combinatorial-explosion Archived 2011-08-23 at the Wayback Machine Combinatorial Explosion.
  3. ^ All completed puzzles are Latin squares, but not all Latin squares can be completed puzzles since there is additional structure in a Sudoku puzzle.
  4. ^ a b Sloane, N. J. A. (ed.). "Sequence A107739 (Number of (completed) sudokus (or Sudokus) of size n^2 X n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 14 April 2017.
  5. ^ "Sudoku enumeration problems". Afjarvis.staff.shef.ac.uk. Retrieved 20 October 2013.
  6. ^ http://chessok.com/Lomonosov Endgame Tablebases Lomonosov Endgame Tablebases
  7. ^ "7-piece-endgame-tablebase (chess)". Stack Exchange.
  8. ^ Aviezri Fraenkel; D. Lichtenstein (1981), "Computing a perfect strategy for n×n chess requires time exponential in n", J. Combin. Theory Ser. A, 31 (2): 199–214, doi:10.1016/0097-3165(81)90016-9
  9. ^ "The Universe By Numbers - The Physics of the Universe". www.physicsoftheuniverse.com. Retrieved 2021-08-27.
  10. ^ Benson, Tim. (2010). Principles of health interoperability HL7 and SNOMED. New York: Springer. p. 23. ISBN 9781848828032. OCLC 663097524.

Read other articles:

ЛьєренаLlerenaМуніципалітетКраїна  ІспаніяАвтономна спільнота ЕстремадураПровінція БадахосКоординати 38°14′17″ пн. ш. 6°00′54″ зх. д. / 38.238° пн. ш. 6.015° зх. д. / 38.238; -6.015Координати: 38°14′17″ пн. ш. 6°00′54″ зх. д. / 38.238° пн. �...

  ميّز عن الناطقين بالفرنسية.   المنظمة الدولية للناطقين بالفرنسية Organisation internationale de la francophonie المنظمة الدولية للناطقين بالفرنسية‌ المنظمة الدولية للناطقين بالفرنسية‌ علم المنظمة الخريطة الاختصار (بالفرنسية: OIF)‏[1]  البلد فرنسا  المقر الرئيسي  فرنسا تا�...

American election 2008 Cook County, Illinois, elections ← 2006 November 4, 2008 2010 → Turnout73.71% Elections in Illinois Federal government U.S. Presidential elections 1820 1824 1828 1832 1836 1840 1844 1848 1852 1856 1860 1864 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 1936 1940 1944 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 Dem 2000 Dem 2004 Dem 2008 Dem Rep 2012 Dem Rep 2016 Dem Rep 2020 Dem Rep 2024 D...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Barrancabermeja – news · newspapers · books · scholar · JSTOR (August 2010) (Learn how and when to remove this template message) Municipality and city in Santander, ColombiaBarrancabermejaMunicipality and city FlagCoat of armsNickname: Oil Capital of Colom...

City in Texas, United StatesRoman Forest, TexasCityWelcome sign at the entrance to Roman Forest.Location of Roman Forest, TexasCoordinates: 30°10′40″N 95°9′22″W / 30.17778°N 95.15611°W / 30.17778; -95.15611CountryUnited StatesStateTexasCountyMontgomeryGovernment[1] • TypeGeneral Law Type A • MayorChris Parr • Council membersMitchell DavisNelda AdkinsDavid Mullane (Mayor pro tem)Greg PartinJames BrooksArea[2 ...

Pencelupan alami yang terbuat dari akar Rubia, Colonial Williamsburg, VA Natural dyes merupakan pencelupan atau pewarnaan yang berasal dari tumbuhan, invertebrata, atau mineral. Kebanyakan pencelupan alami adalah pencelupan sayuran dari sumber-sumber tumbuhan—akar, buah beri, pepagan, daun, dan kayu—dan sumber organik lainnya seperti jamur dan lumut kerak. Di China, pencelupan dengan tumbuhan, pepagan dan serangga yang telah digunakan lebih dari 5,000 tahun.[1] Catatan ^ Goodwin (...

Green and Gold RugbyType of siteSports News and CommunityAvailable inEnglishOwnerGreen and Gold Rugby Pty LtdEditorMatthew RowleyURLwww.greenandgoldrugby.comCommercialYesRegistration2007 Green and Gold Rugby is a website for passionate followers of Australian rugby.[1] It is an Australian Rugby Union website that covers the Wallabies, Super Rugby, Australian club and schoolboy rugby. The contributors are volunteers. History Green and Gold Rugby was founded as a Blogger property b...

Các sáchTân Ước — Phúc Âm — Mátthêu · Máccô · Luca · Gioan — Công vụ — Công vụ Tông đồ — Thư tín — Rôma 1 Côrintô · 2 Côrintô Galát · Êphêsô Philípphê · Thư Côlôxê 1 Thêxalônica · 2 Thêxalônica 1 Timôthê · 2 Timôthê Titô · Philêmon Do Thái · Giacôbê 1 Phêrô · 2 Phêrô 1 Gioan...

Place in Est Region, Burkina FasoLipakaCountry Burkina FasoRegionEst RegionProvinceGnagna ProvinceDepartmentManni DepartmentPopulation (2005 est.) • Total1,507 Lipaka is a town in the Manni Department of Gnagna Province in eastern Burkina Faso. The town has a population of 1,507.[1] References ^ Burkinabé government inforoute communale Archived 2010-03-24 at the Wayback Machine vte Gnagna ProvinceCapital: BogandéBilanga Department Bilanga Balamanou Banga Bartiboagou...

Це іберійські ім'я та прізвище. Перше (батькове) прізвище цієї особи Гонсалес, а друге (материне) прізвище Лопес. Хосе Мануель Гонсалес Лопес Особисті дані Народження 14 жовтня 1966(1966-10-14) (57 років)   Кадіс, Іспанія Зріст 186 см Громадянство  Іспанія Позиція нападник Юнацьк�...

American comedy-drama television series Greek TV redirects here. For Greece's television, see Television in Greece. GreekGenreComedy dramaCreated byPatrick Sean Smith[1]Starring Clark Duke Tiffany Dupont Scott Michael Foster Spencer Grammer Paul James Jake McDorman Amber Stevens Dilshad Vadsaria Jacob Zachar Theme music composerPlain White T'sOpening themeOur Time Now (played on commercials, not during credits)ComposerJohn SwihartCountry of originUnited StatesOriginal languageEnglishN...

City in Texas, United StatesSonora, TexasCitySonora entrance signNickname: Home of the Caverns of SonoraLocation in the state of TexasCoordinates: 30°34′5″N 100°38′39″W / 30.56806°N 100.64417°W / 30.56806; -100.64417CountryUnited StatesStateTexasCountySuttonGovernment • MayorWanda ShurleyArea[1] • Total2.22 sq mi (5.75 km2) • Land2.22 sq mi (5.75 km2) • Water0.00 ...

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (June 2022) (Learn how and when to remove this template message)Heliopolis Style Building in Korba, Heliopolis Heliopolis style is an early 20th-century architectural style developed in the new suburb of Heliopolis in eastern Cairo, Egypt. The Belgian Cairo Electric Railways ...

German football club Football clubRot-Weiß OberhausenFull nameSport-Club Rot-Weiß Oberhausen e.V.Nickname(s)Die Kleeblätter (The Clovers)Founded1904GroundNiederrheinstadionCapacity21,318ChairmanHajo SommersManagerJörn NowakLeagueRegionalliga West (IV)2021–224thWebsiteClub website Home colours Away colours Third colours Rot-Weiß Oberhausen is a German association football club in Oberhausen, North Rhine-Westphalia. The club was formed as Oberhausener SV in December 1904 out of the merge...

Anti-Gaddafi forcesThe former Libyan flag used during the monarchy (1951–69) had been used by some protesters as an opposition symbol. After the war's conclusion, it once again became the flag of Libya.[1]ActiveFebruary–October 2011Country LibyaEngagementsFirst Libyan Civil WarMilitary unit The anti-Gaddafi forces, also known as the Libyan opposition or Libyan rebels, were Libyan groups that opposed and militarily defeated the government of Muammar Gaddafi during the First Li...

Jim LeRoy in Bulldog Jim LeRoy (5 de abril de 1961 – 28 de julio de 2007) fue un piloto de acrobacias estadounidense. Perteneció al Cuerpo de Marines de los Estados Unidos, como Scout (reconocimiento aéreo)/Francotirador, tuvo un grado B.S. en Ingeniería Aeronáutica/Aeroespacial, así como la Licencia de Mantenimiento de Aeronaves. Experiencia profesional Empezando con actuaciones en solitario, se ganó una reputación con sus exhibiciones acrobáticas de gran energía. En el año 2003,...

سياسات اللغة في إسرائيل تعديل مصدري - تعديل   لافتة في وزارة الداخلية / وزارة استيعاب المهاجرين في حيفا. من الأعلى إلى الأسفل: العبرية والعربية والإنجليزية والروسية. السكان الإسرائيليون مجتمع متنوع لغويا وثقافيا. يتحدثون في المجتمع المحلي اللغة العبرية وهي اللغة الرسمية...

Sumatera Selatan IDaerah Pemilihan / Daerah pemilihanuntuk Dewan Perwakilan RakyatRepublik IndonesiaWilayah Daftar Kabupaten : Banyuasin Musi Banyuasin Musi Rawas Musi Rawas Utara Kota : Lubuklinggau Palembang ProvinsiSumatera SelatanDaerah pemilihan saat iniDibentuk2004Kursi8Anggota  Siti Nurizka Puteri Jaya (Gerindra)  Eddy Santana Putra (Gerindra)  Riezky Aprilia (PDI-P)  Kahar Muzakir (Golkar)  Fauzi H. Amro (NasDem)  Mustafa Kamal (PKS)  Achma...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Alliant Computer Systems – news · newspapers · books · scholar · JSTOR (March 2017) (Learn how and when to remove this template message) Alliant Computer Systems CorporationTypePrivateIndustryComputersFounded1982; 41 years ago (1982)FounderRon...

Railway station in Yokkaichi, Mie Prefecture, Japan Takatsuno Station高角駅Takatsuno Station, March 2007General informationLocation2193-4 Takatsuno-cho, Yokkaichi-shi, Mie-ken 512-0923JapanCoordinates34°59′01″N 136°33′15″E / 34.9835°N 136.5543°E / 34.9835; 136.5543Operated by Kintetsu RailwayLine(s) Yunoyama LineDistance6.7 km from Kintetsu-YokkaichiPlatforms2 side platformsOther informationStation codeK25WebsiteOfficial websiteHistoryOpenedJune 1, ...