Clebsch representation
In physics and mathematics , the Clebsch representation of an arbitrary three-dimensional vector field
v
(
x
)
{\displaystyle {\boldsymbol {v}}({\boldsymbol {x}})}
is:[ 1] [ 2]
v
=
∇ ∇ -->
φ φ -->
+
ψ ψ -->
∇ ∇ -->
χ χ -->
,
{\displaystyle {\boldsymbol {v}}={\boldsymbol {\nabla }}\varphi +\psi \,{\boldsymbol {\nabla }}\chi ,}
where the scalar fields
φ φ -->
(
x
)
{\displaystyle \varphi ({\boldsymbol {x}})}
,
ψ ψ -->
(
x
)
{\displaystyle ,\psi ({\boldsymbol {x}})}
and
χ χ -->
(
x
)
{\displaystyle \chi ({\boldsymbol {x}})}
are known as Clebsch potentials [ 3] or Monge potentials ,[ 4] named after Alfred Clebsch (1833–1872) and Gaspard Monge (1746–1818), and
∇ ∇ -->
{\displaystyle {\boldsymbol {\nabla }}}
is the gradient operator.
Background
In fluid dynamics and plasma physics , the Clebsch representation provides a means to overcome the difficulties to describe an inviscid flow with non-zero vorticity – in the Eulerian reference frame – using Lagrangian mechanics and Hamiltonian mechanics .[ 5] [ 6] [ 7] At the critical point of such functionals the result is the Euler equations , a set of equations describing the fluid flow. Note that the mentioned difficulties do not arise when describing the flow through a variational principle in the Lagrangian reference frame . In case of surface gravity waves , the Clebsch representation leads to a rotational-flow form of Luke's variational principle .[ 8]
For the Clebsch representation to be possible, the vector field
v
{\displaystyle {\boldsymbol {v}}}
has (locally) to be bounded , continuous and sufficiently smooth . For global applicability
v
{\displaystyle {\boldsymbol {v}}}
has to decay fast enough towards infinity .[ 9] The Clebsch decomposition is not unique, and (two) additional constraints are necessary to uniquely define the Clebsch potentials.[ 1] Since
ψ ψ -->
∇ ∇ -->
χ χ -->
{\displaystyle \psi {\boldsymbol {\nabla }}\chi }
is in general not solenoidal , the Clebsch representation does not in general satisfy the Helmholtz decomposition .[ 10]
Vorticity
The vorticity
ω ω -->
(
x
)
{\displaystyle {\boldsymbol {\omega }}({\boldsymbol {x}})}
is equal to[ 2]
ω ω -->
=
∇ ∇ -->
× × -->
v
=
∇ ∇ -->
× × -->
(
∇ ∇ -->
φ φ -->
+
ψ ψ -->
∇ ∇ -->
χ χ -->
)
=
∇ ∇ -->
ψ ψ -->
× × -->
∇ ∇ -->
χ χ -->
,
{\displaystyle {\boldsymbol {\omega }}={\boldsymbol {\nabla }}\times {\boldsymbol {v}}={\boldsymbol {\nabla }}\times \left({\boldsymbol {\nabla }}\varphi +\psi \,{\boldsymbol {\nabla }}\chi \right)={\boldsymbol {\nabla }}\psi \times {\boldsymbol {\nabla }}\chi ,}
with the last step due to the vector calculus identity
∇ ∇ -->
× × -->
(
ψ ψ -->
A
)
=
ψ ψ -->
(
∇ ∇ -->
× × -->
A
)
+
∇ ∇ -->
ψ ψ -->
× × -->
A
.
{\displaystyle {\boldsymbol {\nabla }}\times (\psi {\boldsymbol {A}})=\psi ({\boldsymbol {\nabla }}\times {\boldsymbol {A}})+{\boldsymbol {\nabla }}\psi \times {\boldsymbol {A}}.}
So the vorticity
ω ω -->
{\displaystyle {\boldsymbol {\omega }}}
is perpendicular to both
∇ ∇ -->
ψ ψ -->
{\displaystyle {\boldsymbol {\nabla }}\psi }
and
∇ ∇ -->
χ χ -->
,
{\displaystyle {\boldsymbol {\nabla }}\chi ,}
while further the vorticity does not depend on
φ φ -->
.
{\displaystyle \varphi .}
Notes
References
Aris, R. (1962), Vectors, tensors, and the basic equations of fluid mechanics , Prentice-Hall, OCLC 299650765
Bateman, H. (1929), "Notes on a differential equation which occurs in the two-dimensional motion of a compressible fluid and the associated variational problems", Proceedings of the Royal Society of London A , 125 (799): 598– 618, Bibcode :1929RSPSA.125..598B , doi :10.1098/rspa.1929.0189
Benjamin, T. Brooke (1984), "Impulse, flow force and variational principles", IMA Journal of Applied Mathematics , 32 (1– 3): 3– 68, Bibcode :1984JApMa..32....3B , doi :10.1093/imamat/32.1-3.3
Clebsch, A. (1859), "Ueber die Integration der hydrodynamischen Gleichungen" , Journal für die Reine und Angewandte Mathematik , 1859 (56): 1– 10, doi :10.1515/crll.1859.56.1 , S2CID 122730522
Lamb, H. (1993), Hydrodynamics (6th ed.), Dover, ISBN 978-0-486-60256-1
Luke, J.C. (1967), "A variational principle for a fluid with a free surface", Journal of Fluid Mechanics , 27 (2): 395– 397, Bibcode :1967JFM....27..395L , doi :10.1017/S0022112067000412 , S2CID 123409273
Morrison, P.J. (2006). "Hamiltonian Fluid Dynamics" (PDF) . Hamiltonian fluid mechanics . Encyclopedia of Mathematical Physics . Vol. 2. Elsevier. pp. 593– 600. doi :10.1016/B0-12-512666-2/00246-7 . ISBN 9780125126663 .
Rund, H. (1976), "Generalized Clebsch representations on manifolds", Topics in differential geometry , Academic Press, pp. 111– 133, ISBN 978-0-12-602850-8
Salmon, R. (1988), "Hamiltonian fluid mechanics" , Annual Review of Fluid Mechanics , 20 : 225– 256, Bibcode :1988AnRFM..20..225S , doi :10.1146/annurev.fl.20.010188.001301
Seliger, R.L.; Whitham, G.B. (1968), "Variational principles in continuum mechanics", Proceedings of the Royal Society of London A , 305 (1440): 1– 25, Bibcode :1968RSPSA.305....1S , doi :10.1098/rspa.1968.0103 , S2CID 119565234
Serrin, J. (1959), "Mathematical principles of classical fluid mechanics", in Flügge, S. ; Truesdell, C. (eds.), Strömungsmechanik I [Fluid Dynamics I ], Encyclopedia of Physics / Handbuch der Physik, vol. VIII/1, pp. 125– 263, Bibcode :1959HDP.....8..125S , doi :10.1007/978-3-642-45914-6_2 , ISBN 978-3-642-45916-0 , MR 0108116 , Zbl 0102.40503
Wesseling, P. (2001), Principles of computational fluid dynamics , Springer, ISBN 978-3-540-67853-3
Wu, J.-Z.; Ma, H.-Y.; Zhou, M.-D. (2007), Vorticity and vortex dynamics , Springer, ISBN 978-3-540-29027-8