Constraint (mathematics)

In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set.[1]

Example

The following is a simple optimization problem:

subject to

and

where denotes the vector (x1, x2).

In this example, the first line defines the function to be minimized (called the objective function, loss function, or cost function). The second and third lines define two constraints, the first of which is an inequality constraint and the second of which is an equality constraint. These two constraints are hard constraints, meaning that it is required that they be satisfied; they define the feasible set of candidate solutions.

Without the constraints, the solution would be (0,0), where has the lowest value. But this solution does not satisfy the constraints. The solution of the constrained optimization problem stated above is , which is the point with the smallest value of that satisfies the two constraints.

Terminology

  • If an inequality constraint holds with equality at the optimal point, the constraint is said to be binding, as the point cannot be varied in the direction of the constraint even though doing so would improve the value of the objective function.
  • If an inequality constraint holds as a strict inequality at the optimal point (that is, does not hold with equality), the constraint is said to be non-binding, as the point could be varied in the direction of the constraint, although it would not be optimal to do so. Under certain conditions, as for example in convex optimization, if a constraint is non-binding, the optimization problem would have the same solution even in the absence of that constraint.
  • If a constraint is not satisfied at a given point, the point is said to be infeasible.

Hard and soft constraints

If the problem mandates that the constraints be satisfied, as in the above discussion, the constraints are sometimes referred to as hard constraints. However, in some problems, called flexible constraint satisfaction problems, it is preferred but not required that certain constraints be satisfied; such non-mandatory constraints are known as soft constraints. Soft constraints arise in, for example, preference-based planning. In a MAX-CSP problem, a number of constraints are allowed to be violated, and the quality of a solution is measured by the number of satisfied constraints.

Global constraints

Global constraints[2] are constraints representing a specific relation on a number of variables, taken altogether. Some of them, such as the alldifferent constraint, can be rewritten as a conjunction of atomic constraints in a simpler language: the alldifferent constraint holds on n variables , and is satisfied if the variables take values which are pairwise different. It is semantically equivalent to the conjunction of inequalities . Other global constraints extend the expressivity of the constraint framework. In this case, they usually capture a typical structure of combinatorial problems. For instance, the regular constraint expresses that a sequence of variables is accepted by a deterministic finite automaton.

Global constraints are used[3] to simplify the modeling of constraint satisfaction problems, to extend the expressivity of constraint languages, and also to improve the constraint resolution: indeed, by considering the variables altogether, infeasible situations can be seen earlier in the solving process. Many of the global constraints are referenced into an online catalog.

See also

References

  1. ^ Takayama, Akira (1985). Mathematical Economics (2nd ed.). New York: Cambridge University Press. p. 61. ISBN 0-521-31498-4.
  2. ^ Rossi, Francesca; Van Beek, Peter; Walsh, Toby (2006). "7". Handbook of constraint programming (1st ed.). Amsterdam: Elsevier. ISBN 9780080463643. OCLC 162587579.
  3. ^ Rossi, Francesca (2003). Principles and Practice of Constraint Programming CP 2003 00 : 9th International Conference, CP 2003, Kinsale, Ireland, September 29 October 3, 2003. Proceedings. Berlin: Springer-Verlag Berlin Heidelberg. ISBN 9783540451938. OCLC 771185146.

Further reading

Read other articles:

Part of a series onMTV in the United States MTV channels MTV MTV2 Classic Tres MTV Live MTVU CMT Programs on MTV MTV personalities Censorship on MTV MTV Generation MTV News vte MTV, the first and most popular music television network in the U.S. has a long history of hosting live music events in which awards are presented. Along with MTV's related channels around the world, the network produces over 20 award shows annually. This list of MTV award shows links to further information about each ...

العلاقات البريطانية الناميبية المملكة المتحدة ناميبيا   المملكة المتحدة   ناميبيا تعديل مصدري - تعديل   العلاقات البريطانية الناميبية هي العلاقات الثنائية التي تجمع بين المملكة المتحدة وناميبيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عا�...

Amtrak rail station Miami, FLMiami station in October 2017General informationLocation8303 NW 37th AvenueMiami, FloridaUnited StatesCoordinates25°50′59″N 80°15′29″W / 25.84972°N 80.25806°W / 25.84972; -80.25806Owned byAmtrakPlatforms2 island platformsTracks3Connections Metrobus: 42, 112ConstructionParkingYesAccessibleYesOther informationStation codeAmtrak: MIAHistoryOpenedJune 20, 1978PassengersFY 202250,992[1] (Amtrak) Services Preceding st...

Dale Pueblo DaleUbicación en el condado de Outagamie en Wisconsin Ubicación de Wisconsin en EE. UU.Coordenadas 44°16′23″N 88°40′42″O / 44.273055555556, -88.678333333333Entidad Pueblo • País  Estados Unidos • Estado  Wisconsin • Condado OutagamieSuperficie   • Total 78.87 km² • Tierra 78.64 km² • Agua (0.28%) 0.22 km²Altitud   • Media 261 m s. n. m.Población (2010)   • To...

Ministère de l’Administration du territoire et de la DécentralisationCadreType Ministère guinéenSiège KaloumPays  GuinéeOrganisationEffectif 923Ministre Mory CondéSecrétaire générale Moustapha Kobelé KeïtaBudget 41,5 milliards franc guinée (2017)modifier - modifier le code - modifier Wikidata Le ministère de l’administration du territoire et de la décentralisation est le ministère du gouvernement guinéen chargé traditionnellement de la sécurité intérieure, de l�...

Municipio de Mill Municipio Municipio de MillUbicación en el condado de Baxter en Arkansas Ubicación de Arkansas en EE. UU.Coordenadas 36°23′33″N 92°13′44″O / 36.3925, -92.2289Entidad Municipio • País  Estados Unidos • Estado  Arkansas • Condado BaxterSuperficie   • Total 132.5 km² • Tierra 109.1 km² • Agua (17.66%) 23.39 km²Altitud   • Media 189 m s. n. m.Población (2010)  ...

Kamen RiderPatung Kamen Rider #1 di luar kantor pusat perusahaan Bandai.GenreTokusatsuPembuatShotaro IshinomoriPemeranHiroshi FujiokaTakeshi SasakiAkiji KobayashiJirō ChibaLagu pembukaLet's Go! Rider Kick! oleh Hiroshi Fujioka (1–13) dan Masato Shimon (14-88) (pertama)Rider Action oleh Masato Shimon (89–98) (kedua)Lagu penutupLagu Pengendara Bertopeng oleh Masato Shimon (1–71) (pertama)Rider Action oleh Masato Shimon (72–88) (kedua)Lonely Masked Rider oleh Masato Shimon (89–98) (ke...

ريلوناسيبت الاسم النظامي n/a اعتبارات علاجية ASHPDrugs.com أفرودة الوضع القانوني إدارة الغذاء والدواء:وصلة فئة السلامة أثناء الحمل C (الولايات المتحدة) طرق إعطاء الدواء Subcutaneous معرّفات CAS 501081-76-1  ك ع ت L04L04AC04 AC04 درغ بنك 06372  كيم سبايدر NA المكون الفريد 8K80YB5GMG Y كيوتو D06635  ChEMB...

Rugby teamPittsburgh Harlequins RFCFull namePittsburgh Harlequins Rugby Football ClubUnionUSA Rugby, Mid-Atlantic Rugby Football Union, Potomac Rugby Union, Capital Geographical UnionFounded1973LocationCheswick (outside Pittsburgh), Pennsylvania, United StatesGround(s)Founders FieldPresidentSione TapuOfficial websitewww.pittsburghharlequins.org The Pittsburgh Harlequins is an American rugby union that was founded in 1973. The team is a member of the USA Rugby Football Union, the Mid-Atlantic ...

Companhia Paulista de Trens Metropolitanos Companhia Paulista de Trens Metropolitanos Companhia Paulista de Trens MetropolitanosTUE Série 8500 operando na Linha 11-Coral, com comunicação visual da CPTM. Razão social Companhia Paulista de Trens Metropolitanos - CPTM Tipo Empresa de economia mista Atividade Transporte ferroviário Gênero Operadora do transporte ferroviário da região da Grande São Paulo Fundação 28 de maio de 1992 (31 anos) Fundador(es) Luiz Antônio Fleury Fi...

Genus of rodents MelomysTemporal range: Pleistocene to recent Melomys cervinipes Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Rodentia Family: Muridae Tribe: Hydromyini Genus: MelomysThomas, 1922 Type species Uromys rufescens[1] Species See text Melomys is a genus of rodents in the family Muridae. Members of this genus live in the wet habitats of northern Australia (Far North Queensland), New Guinea, Torres Strait Islands and is...

Indian film writer, director and producer This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Raja Krishna Menon – news · newspapers · books · scholar · JSTOR (January 2016) (Learn how and when to r...

American sitcom television series NikkiGenreSitcomCreated byBruce HelfordStarring Nikki Cox Nick von Esmarch Susan Egan Toby Huss ComposerEd AltonCountry of originUnited StatesOriginal languageEnglishNo. of seasons2No. of episodes41 (6 unaired)ProductionExecutive producers Michael Curtis Bruce Helford Bob Myer Deborah Oppenheimer Producers Heather MacGillvray Linda Mathious CinematographyWayne KennanEditors Larry Harris Pam Marshall Tucker Wiard Camera setupMulti-cameraRunning time22–24...

Gedung Sultan IbrahimBangunan Sultan IbrahimInformasi umumStatusSelesaiJenisBekas kantor administrasi pemerintah negara bagian dan gedung legislatif (sebelum 2010)LokasiBukit Timbalan, Johor Bahru, Johor, MalaysiaMulai dibangun1938Rampung1942Pembukaan1942PemilikPemerintah negara bagian Johor sampai 2015Mulai dari 2015: DYMM Sultan Ibrahim ibni Almarhum Sultan IskandarData teknisLiftTidak diketahui Koordinat: 1°27′28.4″N 103°45′39.8″E / 1.457889°N 103.761056°E࿯...

Specialized northern-oriented element of the Canadian Army This article is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic. Please help improve it by rewriting it in an encyclopedic style. (July 2017) (Learn how and when to remove this template message) Canadian RangersRangers canadiens (French)Badge of the Canadian RangersActive1942–presentCountryCanadaBranchCan...

坐标:39°56′08″N 116°23′22″E / 39.93546°N 116.38936°E / 39.93546; 116.38936 火德真君庙(火神庙)北京市文物保护单位所在北京市西城区分类古建筑时代明至清编号3-15登录1984年 地安門火神廟,全稱敕建火德真君庙,又俗称什剎海火神廟,位于北京市西城区地安门外大街万宁桥西北侧,什刹海东岸,是一座道教正一派宫观。火神庙主要供奉南方火德真君(火神)�...

«The 1975»Canción de The 1975Álbum Notes on a Conditional FormPublicación 24 de julio de 2019Grabación Junio de 2019, en EstocolmoGénero Spoken word canción de protesta ambientDuración 4:57 minutosDiscográfica Dirty HitEscritor(es) Greta Thunberg George Daniel Matthew HealyProductor(es) George Daniel Matthew Healy Videoclip «The 1975» en YouTube. [editar datos en Wikidata] «The 1975» es la canción inicial del próximo álbum de The 1975, Notes on a Conditional Form. D...

Views of the LDS Church about sexuality See also: Religion and sexuality This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Sexuality and the Church of Jesus Christ of Latter-day Saints – news · newspapers · books · scholar · JSTOR (June 2021) (Learn how and when to remove this template message) Sexuality has a prominent role within the theology of the Chu...

Sgt. DiscoStudio album by Circus DevilsReleasedAugust 28, 2007Recorded2006 / 2007 at Waterloo Sound RecordingGenrePsychedelic rock, experimental rock, alternative rock, art rockLength67:00LabelIpecac RecordingsProducerTodd TobiasCircus Devils chronology Five(2005) Sgt. Disco(2007) Ataxia(2008) 2007 album by Circus Devils Professional ratingsReview scoresSourceRatingAllMusic[1]Spin[2]Filter[3]Weekly Dig[4]Tiny Mix Tapes[5]pitchforkmedia[6] Sg...

Minimally invasive surgical procedure This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (September 2022) Multi-Level Fibrotomy[edit on Wikidata] Multi-level fibrotomy is a conservative minimally invasive surgical procedure that consists in the exhaustion of the bands and muscle fibers affected by spasticity, in case these are due to difficulties in the physiological movement of a j...