Channelome

The channelome, sometimes called the "ion channelome", is the complete set of ion channels[1] and porins[2] expressed in a biological tissue or organism.[3] It is analogous to the genome, the metabolome (describing metabolites), the proteome (describing general protein expression), and the microbiome. Characterization of the ion channelome, referred to as channelomics, is a branch of physiology, biophysics, neuroscience, and pharmacology, with particular attention paid to gene expression.[4][5][6] It can be performed by a variety of techniques, including patch clamp electrophysiology, PCR, and immunohistochemistry.[4][7] Channelomics is being used to screen and discover new medicines.[4][8]

Functional studies

Structure and function of membrane channels are closely linked,[9][10] but perhaps the most famous work studying the structure of ion channels is the paper by Doyle et al. 1998, which led to the Nobel Prize in Chemistry for Roderick MacKinnon.[1] Abnormalities of channel structure consequently result in their physiological mis-function. Channelomic studies include the systematic study of diseases resulting from such mis-functions. Such a disease is termed a channelopathy.[4][8] In addition, channelomic studies screen potential drugs for their effectiveness at channelopathies, by examining the binding affinities of candidate drug compounds.[4][8]

References

  1. ^ a b Doyle, D. A., Morais-Cabral, J., Pfuetzner, R. A., Kuo, A, Gulbis, JM, Cohen, SL, Chait, BT, MacKinnon, R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77.
  2. ^ Preston GM, Carroll TP, Guggino WB, Agre P (1992). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256(5055): 385–387
  3. ^ Barrett-Jolley, R., R. Lewis, et al. (2010). The emerging chondrocyte channelome: Frontiers in Membrane Physiology and Biophysics. doi:10.3389/fphys.2010.00135
  4. ^ a b c d e Lehmann-Horn, F.; Jurkat-Rott, K. (2003). "Nanotechnology for neuronal ion channels". Journal of Neurology, Neurosurgery, and Psychiatry. 74 (11): 1466–1475. doi:10.1136/jnnp.74.11.1466. PMC 1738249. PMID 14617700.
  5. ^ Jurkat-Rott, K.; Lehmann-Horn, F. (2004). "The Patch Clamp Technique in Ion Channel Research". Current Pharmaceutical Biotechnology. 5 (4): 387–395. doi:10.2174/1389201043376715. PMID 15320769.
  6. ^ Gabashvili, S.; Sokolowski, H.; Morton, C.; Giersch, B. (Sep 2007). "Ion channel gene expression in the inner ear". Journal of the Association for Research in Otolaryngology. 8 (3): 305–328. doi:10.1007/s10162-007-0082-y. ISSN 1525-3961. PMC 2538437. PMID 17541769.
  7. ^ Perraud, A. L.; Schmitz, C.; Scharenberg, A. M. (2006). Reviews and Protocols in DT40 Research. Subcellular Biochemistry. Vol. 40. pp. 257–270. doi:10.1007/978-1-4020-4896-8_15. ISBN 978-1-4020-4895-1. S2CID 436332.
  8. ^ a b c Camerino, D. C.; Tricarico, D.; Desaphy, J. F. (Apr 2007). "Ion channel pharmacology". Neurotherapeutics. 4 (2): 184–198. doi:10.1016/j.nurt.2007.01.013. PMID 17395128.
  9. ^ Cohen, B. E.; Grabe, M.; Jan, L. Y. (2003). "Answers and Questions from the KvAP Structures". Neuron. 39 (3): 395–400. doi:10.1016/S0896-6273(03)00472-0. PMID 12895415.
  10. ^ Randall, A.; Mcnaughton, N.; Green, P. (Aug 2006). "Properties of voltage-gated Na+ channels in the human rhabdomyosarcoma cell-line SJ-RH30: conventional and automated patch clamp analysis". Pharmacological Research. 54 (2): 118–128. doi:10.1016/j.phrs.2006.03.005. ISSN 1043-6618. PMID 16675265.