^ abcVeterinary Medicine. American Veterinary Publishing Company. 1953. Experimentally, it is reported that ketogestin has a profound effect upon carbohydrate metabolism, accelerating production of glucose from protein (gluconegenesis). It possesses physiological activities associated with certain hormones of the adrenal cortex. Its effect on carbohydrate metabolism is similar to that of cortisone, as proved by deposition of glycogen, increasing glycosuria, and decreasing fat metabolism. This compound, however, does not cause certain undesirable activities in ketosis and other conditions as do other adrenocortical hormones, in that it does not cause retention of the sodium ion, nor does it produce hypertension during high sodium ion intake. Ketogestin is devoid of androgenic, estrogenic, or progestational activity and is nontoxic in amounts greatly exceeding pharmacological dosage.
^Harrison RW, Balasubramanian K, Yeakley J, Fant M, Svec F, Fairfield S (1979). "Heterogeneity of AtT-20 Cell Glucocorticoid Binding Sites: Evidence for a Membrane Receptor". Steroid Hormone Receptor Systems. Advances in Experimental Medicine and Biology. Vol. 117. Springer. pp. 423–440. doi:10.1007/978-1-4757-6589-2_23. ISBN978-1-4757-6591-5. PMID474288.
^ abOtto Hoffmann-Ostenhof (1959). Proceedings of the Fourth International Congress of Biochemistry, Vienna, 1-6 September, 1958. and. p. 269. In addition, it had been previously reported that 11β-hydroxyprogesterone was devoid of progestational action. However, we found that it does possess about 1% of the activity of progesterone. This trace activity is substantially enhanced by fluorination, since 9α-fluoro-11β-hydroxyprogesterone is eight times as active as the non-halogenated analogue.6 Concomitantly, Fried et al.7 described the relatively high progestational activity of 9α-bromo-11-ketoprogesterone as well.
^Zhong Y, Simmonds MA (1996). "Pharmacological characterisation of multiple components in the enhancement by pregnanolone and propofol of [3H]flunitrazepam binding to GABAA receptors". Neuropharmacology. 35 (9–10): 1193–1198. doi:10.1016/s0028-3908(96)00056-1. PMID9014134. S2CID20839591.